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Preface

The research described in this dissertation is part of the Nephological Seman-
tics1 research project at the qlvl research group in KU Leuven, which aims to
develop tools for large-scale corpus-based semantic analysis. A core aspect of
the project involves representing semantic structure with distributional mod-
els, a computational tool that currently requires a deeper understanding of its
inner workings and how its results relate to cognitive theories of meaning.

Context-counting distributional models represent words2 as vectors of co-
occurrence frequencies in a multidimensional space (Turney & Pantel 2010,
Lenci 2018). Basically, a word is represented by its association strength to
other words. They can be generated at both type and token level (Heylen,
Speelman & Geeraerts 2012, Heylen et al. 2015, De Pascale 2019). At type
level, two words are represented as more similar if they are attracted to the
same contextual features (e.g. other words) and repelled by the same contextual
features. This should allow us to identify semantic fields and other relationships
between words, but collapses the full range of contexts of each word into one
representation. At token level, instead, we look at individual occurrences and
define them as more similar if the words in their contexts are attracted to
and repelled by the same contextual features. This way we should be able
to map the internal variation of the behaviour of individual words, i.e. their
semasiological structure.

Within the larger Nephological Semantics project, this particular work
package is dedicated to the understanding of token-level distributional mod-
els as a tool for the study of polysemy. Concretely, I explored a number of
parameter settings for the models (i.e. ways of defining the context used to rep-
resent each token) and their impact on the resulting representation, by means
of visual analytics. Manually annotated sense tags were used as a heuristic,
but without considering them a golden standard. Instead, the aim was to map
parameter settings to various semantic phenomena coded in the annotations,
such as meaning granularity (e.g. distinguishing homonyms and senses within
the homonyms). The distributional models, which take the form of large ma-
trices, can be reduced to two dimensions via different methods, such as t-sne
(van der Maaten & Hinton 2008, van der Maaten 2014). These coordinates can
then be mapped onto a scatterplot, resulting in a variety of shapes, which we
call clouds.

1https://www.arts.kuleuven.be/ling/qlvl/projects/current/nephological-semantics
2The term word is used very loosely here to encompass different possible definitions.
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The workflow was applied to a set of 32 Dutch nouns, verbs and adjec-
tives exhibiting a range of semantic phenomena. For each of them, 240-320
concordance lines were extracted from a corpus of Dutch and Flemish newspa-
pers, annotated and modelled. The combination of parameter settings, some of
which included syntactic information, resulted in 200-212 different models per
lemma. The models were clustered with Partition Around Medoids (Kaufman
& Rousseeuw 1990, Maechler et al. 2021) so that a manageable, representa-
tive set could be explored in more depth, in particular visualizing their t-sne
representations.

The contributions of this dissertation are twofold. On the one hand, the
exploration of the possibilities and limits of distributional models to lexico-
logical research resulted in warnings, suggestions and guidelines for practical
studies. In other words, it offers an assessment and interpretation of distri-
butional models from the perspective of descriptive linguistics. On the other
hand, it presents a visualization tool designed for the exploration of token-level
distributional models from such a perspective (Montes & QLVL 2021). Its
interactive quality makes it challenging to describe it adequately in a printed
text, so I would strongly recommend visiting it in its virtual home3 and explore
it.

3https://qlvl.github.io/NephoVis/

https://qlvl.github.io/NephoVis/
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Chapter 1

Introduction

If meaning is found and created in use, and corpora are language in use, can we
find meaning in corpora? The field of usage-based semantics is large and rich,
so the answer to this question is clearly positive. Corpora offer an immense
amount of usage data on which to carry analyses, even if they barely scratch the
surface of the amount of language that is actually produced — it is desirable
and tempting to tap into this vast ocean to obtain the most detailed, the most
reliable, the most thorough information. But there is a crucial bottleneck when
it comes to semantic analysis: annotation is time- and energy-consuming. As
long as we cannot instruct an automatic system to disambiguate each word in
a corpus — like we do to tokenize and lemmatize, i.e. to identify what counts
as a word and what its root is, or even to assign parts of speech or syntactic
relations — semantic annotation is performed by humans. Humans are slower
than computers; we get tired, we get confused, we need to eat and think of
things beyond semantic annotation as weel. We also disagree sometimes —
what is a sense? Are these two things really the same?

Automatic disambiguation systems do exist. Word Sense Disambiguation
is an important task within Natural Language Processing (nlp). The notion
of task is of crucial importance here: nlp algorithms are typically concerned
with concrete applications and are evaluated in terms of those applications.
There exists a correct answer that the algorithm must return. This is not so
directly applicable to the situation of lexicological and lexicographical research
— the study of the meanings of words and their relationships — especially from
a Cognitive Linguistics point of view, where hard, dichotomous answers are
rare. But let’s suppose for a moment that we can conciliate both approaches,
and what counts as the answer from an nlp point of view is an answer from
the lexicological perspective. Then we could use automatic disambiguation
procedures to make the heavy lifting of semantic annotation of our growing
body of corpus data and use their results for a partial description of language.
As long as we know which answer the nlp algorithm is returning or, better yet,
how to ask what we want to know. Maybe tuning the algorithm for outputs
that from an nlp point of view would be wrong can result in complementary
answers for a richer lexicological description. Such a qualitative perspective,

1
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trying to interpret not just whether the computational model matches a target
but also how or why it does (not), also requires appropriate analytical tools.
One such tool represents the internal semantic structure of an item, derived
from computational models, as a 2d scatterplot where instances occurring in
similar context are shown together, forming clusters or clouds.

This dissertation is concerned with the application of distributional methods
to lexicological research and their exploration by means of visual analytics.
The methodology will be tested and illustrated with a set of 32 Dutch lemmas,
of which concordance lines will be extracted from a corpus of newspapers.
Distributional models, developed within the field of Computational Linguistics,
will be introduced in Section 1.1. In Section 1.2 we will discuss their relevance
in Cognitive Semantics and Section 1.3 will offer an overview of the visual
analytics dimension. The study described here is part of a larger research
project within the Quantitative Lexicology and Variational Linguistics research
group (qlvl) at KU Leuven. A brief history of the project and how this
dissertation fits in it will be offered in Section 1.4. Finally, Section 1.5 will
present the structure of the dissertation.

1.1 Distributional Semantics and Computa-
tional Linguistics

Distributional semantics is a usage-based model of meaning that underlies var-
ious computational methods for semantic representation (Sahlgren 2008, Lenci
2018): it is an educational program for computers that lets them pretend they
understand human languages. It relies on what is called the Distributional Hy-
pothesis, according to which lexemes with similar meanings will have similar
distributions, i.e. will occur in similar contexts. The core idea is typically at-
tributed to Harris (1954) and Firth (1957), but exactly how enthusiastic they
would be at the sight of the current implementations is disputed: Tognini-
Bonelli (2001: 157) remarks that Firth would not be in favour of electronic cor-
pora, and Geeraerts (2017) offers a comprehensive comparison between Harris’
position and current distributional semantics. The attribution issue notwith-
standing, the idea that meaning can be modelled by means of distributional
information is pervasive in nlp and at the core of every form of Distributional
Semantics. A more important question is what we mean by meaning or se-
mantics to begin with (Sahlgren 2006, Lenci 2008), which in this research is
informed by the Cognitive Linguistics framework. Beyond the particular atten-
tion to the semantic side of distributional semantics, this dissertation sets itself
apart from most mainstream computational approaches in three core aspects:
its motivation, the definition of units and its reliance on context-counting mod-
els.

1.1.1 Motivation
Computational Linguistics is typically task-oriented: it aims to solve concrete
challenges such as information retrieval, question answering, sentiment analy-
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sis, machine translation, etc. For that purpose, benchmarks or gold standards
are developed and the models are tested against them. For example, Baroni,
Dinu & Kruszewski (2014) test different kinds of models against datasets tai-
lored to evaluate semantic relatedness, synonym detection, concept categoriza-
tion, selectional preferences and analogy; see Agirre & Edmonds (2007) and Ra-
ganato, Camacho-Collados & Navigli (2017) for evaluation systems for sense
disambiguation. This is understandable and appropriate in a task-oriented
workflow: when it comes to output, it does not really matter how the model
reached the answer, as long as it is the answer that we seek. In contrast, inves-
tigating the structure of semantic representations, i.e. the how of this process,
calls for a different approach (see for example Baroni & Lenci 2011, Wielfaert
et al. 2019). On the one hand, we do not assume that there is one correct
answer because we do not assume that there is only one question. Beyond
“Are these two words similar?”, we are interested in: “Are they synonyms?”,
“Are they co-hyponyms?”, “Are they regionally specific expressions of the same
concept?”, and so forth. Different models may focus on different dimensions of
semantic structure and thus answer different questions. For that reason, the
dataset collected for this research covers a wide range of semantic phenomena,
in the hope of tuning distributional models to their identification. On the other
hand, we are not confident that any of those questions has an unequivocal an-
swer either. As Chapter 4 will show, annotators often agree on the sense of
an utterance, but not always. Hence, the manual annotations will serve as a
guideline for the interpretation of the models, but not as a law to judge their
accuracy.

1.1.2 Units of analysis
Whereas computational models typically work at type-level and often with word
forms, this dissertation focuses on token-level models with lemmas as units.
Type-level modelling represents a lexical unit, such as word, as the aggregated
distributional behaviour of all its occurrences, e.g. we could see that word tends
to be preceded by the. Patterns can be found by accumulating and classifying
contextual information from thousands if not millions of events. The profile
of a type can subsequently be compared to the profiles of other types, e.g. we
can see that sentence also tends to be preceded by the, while walking does not.
Such a representation conflates the variation within the range of application of
that item as part of one overall tendency, and is therefore not suited to study
polysemy. Even if the context does contain disambiguating cues, such as “Can
we have a word?”, or “That word is not in the dictionary”, the type-level repre-
sentation will cover both. In spite of these shortcomings, some computational
approaches to modelling polysemy do try to find the patterns in the type-level
representations, e.g. Koptjevskaja-Tamm & Sahlgren (2014). In contrast, the
work presented here relies on token-level modelling, which represents individual
instances, e.g. comparing the two occurrences of word in the examples above.
This approach does originate in computational linguistics (Schütze 1998) but
is far less popular than type-level approaches, which are considered the default
in most introductory descriptions of distributional models (Lenci 2018, Turney
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& Pantel 2010, Bolognesi 2020).
Apart from the distinction between modelling types or tokens, a crucial

difference between this approach and many studies in computational linguistics
is that the unit of analysis is the lemma instead of the word form. On the
one hand, relying on word forms avoids layers of preprocessing that already
incorporate a certain interpretation in terms of what counts as a word, which
different forms go together and how they are classified grammatically. Sinclair
(1991) also argues along these lines for the usage of word forms as lexical
units in corpus linguistics. And, admittedly, different word forms of a given
lemma might exhibit diverging distributional and semantic profiles. However,
from a lexicological and lexicographical perspective, centring the lemma — the
combination of stems and grammatical category — is the common practice.
Moreover, the mismatch between word forms and lemmas — and therefore
between either of them and meanings — is highly dependent on the language
we describe and the words themselves. Therefore, lemmas will be the unit of
analysis in this dissertation. This is not to say that the workflow depends on
this decision, in the same way that it does not depend on Dutch being the
language of the corpus. The methodology presented in these pages could be
applied with word forms at the centre, but the degree to which the conclusions
reached here would be applicable is an empirical question.

1.1.3 Context-counting and context-predicting
Currently, the most popular approach for distributional semantics relies on
neural networks, i.e. context-predicting models. The methodology followed in
this project relies instead on count-based or context-counting models: the val-
ues of the vectors, i.e. numerical representations of lexical units, are (relatively)
directly derived from frequency counts. In contrast, the approach initiated by
Mikolov et al. (2013) and which has taken over nlp, i.e. word embeddings, is a
context-predicting architecture. Neural networks are trained to predict empty
slots in a fragment of text: given a fixed window with a target item in the
middle, cbow models are given the surrounding context in order to predict
the target item, whereas skip-gram models try to predict the context based on
the item in the middle. The training consists on a long sequence of trial and
error: there is a right answer, i.e. the actual corpus, the algorithm starts by
guessing and receives feedback, and iteratively it adapts its guessing strategy to
minimise the error. The strategy consists of weights in the hidden layer of neu-
ral network; these weights are then used to represent the target item. In other
words, while a context-counting model would define the distributional profile
of a word along the lines of “it tends to co-occur with chocolate and cookies
but not with mycorrhyza or algorithm”, context-predicting models say, more or
less, “this is how I feel/what my brain does when I see that word”. The latter
is, in a sense, more in line with the core of meaning as an introspective expe-
rience that defies definitions and restrictions, although computational models
are far from actually understanding language. Exploring to what degree these
models approximate humans’ assessments lies in the purview of other research
programmes involving psycholinguistic experiments. Studies have been carried
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out to compare the performance of context-counting and context-predicting
models — in terms, of course, of their accuracy with regards to popular bench-
marks. Baroni, Dinu & Kruszewski (2014) found that the word2vec architec-
ture outperformed context-counting models, much to their disappointment. In
contrast, Levy, Goldberg & Dagan (2015) fine-tuned context-counting models
based on the hyperparameters from word embedding and found that perfor-
mance differences where local or even insignificant.

When our purpose is to understand what of meaning, if anything, can be
found in text data, the interpretation of context-counting models is much more
transparent. We can trace the composition of the vectors to concrete fre-
quencies and instances. As we will see in the second part of this dissertation,
these supposedly more transparent models are already quite opaque, especially
with the added transformation from type-level to token-level models. That
said, most of the workflow described here can also be combined with context-
predicting models.

The years since Mikolov et al. (2013) have seen a rapid and enthusiastic
growth in the field of word embeddings and nlp, with new models continually
surpassing the previous ones. One of these is bert (Devlin et al. 2019), which,
in spite of its indubitable relevance to the approach proposed here, will not be
explored. Bidirectional Encoder Representations from Transformers (bert) is
a machine-learning technique that can represent individual instances and sen-
tences: unlike other context-predicting models, it can be used for token-level
representations. But like other context-predicting models, its output is some-
what less interpretable than context-counting models. It has been tested on
the typical task-based benchmarks and it is so time- and resources-consuming
that nlp researchers will typically use pre-trained embeddings and fine-tune
them for specific tasks rather than generate them from scratch. In principle,
combining a model of the bert family with the workflow described here is not
impossible: as long as occurrences are represented with vectors from which we
can derive pairwise distances, the rest of the analysis stays the same. However,
some crucial differences remain: we do not know which elements of the con-
text informed the models’ decision, they are based on word forms and the word
forms are based on a different tokenizer. For instance, a brief test of bertje (de
Vries et al. 2019), the Dutch counterpart of bert, on a section of the dataset
used for this project revealed that (i) for some lemmas bertje’s answer might
be closer to the human perspective, (ii) for other lemmas a deeper investigation
is in order and (iii) other lemmas cannot be modelled at all because of the dis-
crepancy in the tokenization procedure1. In other words, even if combining the
methodologies is possible, the actual implementation requires some planning,
specific decisions and tailoring the procedure to extract as much as we can from
the backstage operations in context-predicting models.

1The comparison was applied to a few lemmas, including hoop ‘hope/heap’, dof ‘dull’ and
heilzaam ‘healthy/beneficial’. In the first case, which was particularly challenging for the
context-counting models, bertje outperformed them; in the second, some context-counting
models outperformed bertje; and the third was never identified as one unit by bertje’s
tokenizer.
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1.2 Distributional Semantics and Cognitive Se-
mantics

As a computational approach, distributional semantics is not intrinsically
linked to any particular linguistic theory. Its usage-based essence makes it a
natural fit for approaches that describe the parole along with the langue (in
terms of de Saussure 1971), such as Cognitive Linguistics. In the introduction
to The Oxford Handbook of Cognitive Linguistics, it is described as

an approach to the analysis of natural language that originated in
the late seventies and early eighties in the work of George Lakoff,
Ron Langacker, and Len Talmy, and that focuses on language as an
instrument for organizing, processing, and conveying information.
(Geeraerts & Cuyckens 2007b: 3)

It stands in contrast to frameworks that uphold a strict separation of
semantics and pragmatics, of structure and usage, of lexical knowledge and
world knowledge (Geeraerts 2010b). As the introduction and composition of
the Handbook shows, as well as other compilations along these lines (such as
Rudzka-Ostyn 1988, Kristiansen et al. 2006, Ibarretxe-Antuñano & Valenzuela
2016), the diverse field of Cognitive Linguistics is guided by a number of prin-
ciples derived from this central notion of language as categorization. Among
these principles, three in particular constitute the theoretical cornerstones of
this study: (i) an emphasis on meaning, (ii) the notion of fuzzy and prototypical
categories and (iii) a usage-based approach.

1.2.1 Everything is semantics
Understanding language as categorization and its function in the organiza-
tion and communication of knowledge necessarily places the focus on meaning
(Geeraerts & Cuyckens 2007a, Geeraerts 2016). From a Cognitive Linguistics
perspective, all linguistic structures — not just lexical items but also syntactic
patterns — are considered inherently meaningful (Langacker 2008, Lemmens
2015). Moreover, meaning in Cognitive Linguistics goes beyond traditional
semantics — i.e. distinguishing linguistic from nonlinguistic features — and in-
cludes encyclopedic knowledge and pragmatics (Glynn 2010, Geeraerts 1997).
While it is crucially a cognitive phenomenon involving conceptualization, it
takes place in the mind of physical, embodied beings who perceive, under-
stand, and interact with their world: meaning is embodied and neither limited
to nor separated from reference (Rohrer 2007).

The centrality of semantics in Cognitive Linguistics has led to a strong
body of work on meaning and on how traditional notions fit in with cognitive
principles. For example, the line of work initiated in the ’80s with Lakoff &
Johnson (2003) and further developed along different lines by Raymond Gibbs
Jr., Gerard Steen, Zoltán Kövecses, Elena Semino and many others (see for
example Gibbs & Steen 1999, Gibbs Jr. 2008, Semino 2008, Kövecses 2015)
builds on understanding a traditional linguistic concept, i.e. metaphor, with
the tools of Cognitive Linguistics. In these terms, metaphor refers to ways of
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thinking, understanding, conceptualizing, that manifest in linguistic behaviour
but also permeate other areas of everyday life.

Along these lines, relationships between senses are understood as cognitive
mechanisms that need not be restricted to linguistic behaviour nor to extralin-
guistic reference. Semantic categories such as metaphor, metonymy, special-
ization, homonymy and prototypicality are crucial tools to make sense of the
variety of relationships between what we understand as senses. They are not
unique to Cognitive Linguistics, but a framework that understands meaning as
a property of any linguistic structure and as covering linguistic and extralin-
guistic features allows us to look for meaning in distributional models without
expecting them to exhaust semantic description.

Cognitive Linguistics also incorporates the combination of a semasiological
and onomasiological perspective, while previous frameworks have defined either
one or the other as the only possibility (Geeraerts 2010b). A semasiological
perspective, which is predominant in the research described here, starts from
a form or expression and investigates its range of meanings or applications,
e.g. the study of polysemy. An onomasiological perspective, on the other hand,
starts from a concept and describes the forms that are used to express it,
e.g. synonymy. This dissertation takes a semasiological perspective, but token-
level distributional models can be used from both perspectives, as shown in
De Pascale (2019).

1.2.2 Prototypicality
Among the most important notions in the Cognitive Linguistics understanding
of categorization we find prototypicality and salience (Rosch 1978). Categories
cannot always be described in terms of necessary and sufficient conditions; in-
stead, they may be characterized by clusters of co-occurring properties that
do not apply to all members to the same degree. They may even have fuzzy
boundaries, an unclear range of application. As a property of categorization,
this is a property of language, which Cognitive Linguistics embraces, incorpo-
rating a quantitative dimension to the study of meaning (Geeraerts 2010b). At
this point, a quantitative perspective does not immediately require statistical
methods, but refers to a shift in the understanding of what counts as meaning
description. The notion of prototypicality makes it interesting, if not inevitable,
to look at the uneven distribution and importance of the different features or
members of a category, as is done, for example, in Geeraerts, Grondelaers &
Bakema (1994) and Geeraerts (1997):

…the essence of prototype theory lies in the fact that it highlights
the importance of flexibility (absence of clear demarcational bound-
aries) and salience (differences of structural weight) in the semantic
structure of linguistic categories. (Geeraerts 2006: 74)

Given the set of meanings that a form can express, i.e. the intensional level,
some of them are more salient than others. For example, given my current
lifestyle, ‘device to control the cursor on a screen’ is a more salient meaning
of mouse than ‘small rodent’; but, crucially, this might not be the case in
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other contexts, for other speakers. Given the range of application of a form
or a meaning (i.e. the extensional level), some may be more typical members
than others. For instance, a black, minimalist computer mouse might be more
typical than a wavy, wider gaming mouse with a bright green drawing of a
dragon. These situations represent intensional and extensional nonequality,
respectively: some senses or members of a category are better representatives
of the category than others. Both dimensions may overlap: a typical computer
mouse concentrates most of the typical features of the category, regarding
its functionality, size, shape and colour; conversely, a typical feature is de-
fined by occurring frequently in the members of the category. These are two
of the characteristics of prototypicality, and are complemented by intensional
and extensional non discreteness, i.e. the lack of a single set of necessary and
sufficient conditions and fuzzy boundaries of the categories. As could be ex-
pected, even prototypicality is a prototypical category, as these four features
need not co-exist. The relative salience of the two senses of mouse does not
mean that we might find an unknown entity and be in doubt whether it is a
mouse; meanwhile, discussions such as whether a tomato is a fruit might easily
ensue. Geeraerts (2006: Ch. 4) offers a typology of salience phenomena as
an application of prototype theory beyond the semasiological structure. For
example, if from the semasiological perspective we are interested in describing
how frequent (or salient) apples are as referents for the word fruit, from the
onomasiological perspective we are interested in how frequently the word fruit
is used to refer to apples (compared to saying apple).

The notion of (semasiological) prototypicality will be relevant for the in-
terpretation of the modelling in Chapter 6. Until then, it also permeates the
understanding of meaning that underlies this research. On the one hand, fuzzy
boundaries and degrees of membership invite us to rethink the usefulness of rei-
fied senses: ambiguous examples and overlapping features are to be expected.
Instead, a bottom-up procedure would rather capture configurations of features
(Glynn 2014); assigning discrete senses to corpus data imposes a categorical
structure that we know to be inappropriate (see also Geeraerts 1993). On the
other hand, distributional models, as a quantitative approach that measures
similarity between entities, is particularly adequate to such a non-discrete rep-
resentation.

In this dissertation I will continue to talk about senses and I will extract
discrete patterns from the non-discrete representations in terms of clusters,
in order to manipulate and talk about these abstract entities, without imply-
ing that they have any ontological reality beyond the explanatory purposes.
When it comes to senses, they are not considered a gold standard, an unique
solution to the semasiological description of a lexical item; instead, they are
guides and an operationalization of certain research questions. The clusters,
on the other hand, will be generated by an algorithm that is forced to produce
discrete groups but does assign its elements different degrees of membership
(see Section 2.2.4). Finally, the overall approach describes tendencies, prefer-
ences, probabilities: at no level are the categories and typologies offered in this
dissertation discrete and uniform. I have tried, but language resists.
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1.2.3 A usage-based approach
Cognitive Linguistics presents itself as a usage-based approach and, as such, it
is entirely compatible with a bottom-up, empirical, quantitative methodology
such as distributional semantics. Quantitative cognitive semantics is now an
established field, as shown by the contributions gathered in Gries & Stefanow-
itsch (2006), Glynn & Fischer (2010) and Glynn & Robinson (2014), among
others. However, not all of Cognitive Linguistics — and especially Cognitive
Semantics — relies on empirical methods: introspection was still the main
source of information in much of the foundational sources (see for example the
discussion illustrated in Geeraerts 1999). In practice, both introspection and
empirical methods are required in scientific research, albeit applied to differ-
ent stages or aspects of the investigation (Geeraerts 2010a). Interpretation
is needed in order to formulate hypotheses that will guide the data collection
and analysis and to interpret the results: the data does not speak for itself.
The empirical steps, in contrast, facilitate reproducibility and falsifiability: by
describing the concrete corpus, the method of collection and the quantitative
methods applied to it, the study can be replicated by different researchers and
the results compared. At the same time, large-scale quantitative methods such
as distributional semantics delegate time consuming or computationally expen-
sive tasks, such as reading and comparing thousands of attestations of a word,
to an automatic system that can perform it faster and more systematically
than humans, leaving the researcher to dedicate their energies in the tasks that
humans are best at: interpretation and creativity. That is precisely the long-
term goal of this research: to offer an empirical, quantitative workflow that
transforms huge amounts of data, finds relevant patterns and provides them to
the linguist for interpretation and the formulation of hypotheses.

Empirical research in semantics can take different shapes: corpus-based
methods, as is the case in this research, but also experimental and referential
methods. As Geeraerts (2015: 242-243) argues, each of these approaches cap-
tures a different aspect of meaning, namely textual patterns, on-line processing
or referential properties. Meaning, especially from the maximalist perspective
taken in Cognitive Linguistics, is too complex to be fully described by any one
of these methods in isolation (see also Arppe et al. 2010, Stefanowitsch 2010).
As such, we do not have such high expectations from distributional seman-
tics — part of the question is: what do these models say? Concretely, we do
not expect distributional models to provide information on how we think, but
on how a community speaks and categorises: “ ‘language as cognition’ encom-
passes shared and socially distributed knowledge and not just individual ideas
and experiences” (Geeraerts 2016: 533). It is the pool of shared practices and
knowledge that corpora offers and distributional semantics tries to model.

Moreover, despite the large corpora, the advanced quantitative techniques
and the sophisticated visualization tools on which this dissertation is built, this
study has its limits. It is restricted to a specific corpus, and as such to specific
varieties of a specific language, to a specific genre and period in time, to written
text; it is restricted to a limited set of lexical items that were investigated; it
is restricted to the precise samples collected, the precise questions asked, the
precise techniques used to answer them. Most importantly, I will be as thorough
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as possible in stating the conditions in which the research was carried out and
the choices made along the way. As a result, these limits are not just warnings
as to the range of applicability of the results and conclusions, but also and more
importantly sources of possibilities, inspiration for similar studies facilitated by
the empirical nature of the investigation.

1.3 Visual analytics
Distributional models return mathematical representations of lexical items —
or, in the case of token-level models, their attestations. These mathematical
representations are arrays of numbers that, in the best-case scenario, we can
interpret as co-occurrence information, as an unsorted list of collocations. We
need an additional step to transform these individual representations into sim-
ilarities, which operationalize the Distributional Hypothesis mentioned above.
However, even then, the output is a matrix with as many rows and columns as
items we are comparing; depending on the magnitude of our sample and the
subtlety of its structure, scanning it visually can be taxing, if not entirely in
vain. So, that is not what we do.

For word sense disambiguation, evaluation would normally involve a clus-
tering algorithm, a benchmark and a measure of accuracy. The clustering
algorithm would take the vectors or the similarity matrix and return clusters:
groups of similar items that are different from each other. The measure of ac-
curacy would report on the agreement between the clustering solution and the
benchmark: the closer they are, the better the model. However, these measures
say nothing about the qualitative differences between models, i.e. whether they
misclassified the same items or how they differ from the benchmark. Even if we
take the gold standard as an actual ground truth and the only correct solution
— which is not the case in this study — this is not an ideal situation.

It is responding to these concerns that a visualization tool for the explo-
ration of token-level models was envisaged (Wielfaert et al. 2019). The tool
developed by Wielfaert in the context of the Nephological Semantics project
takes the output from a dimensionality reduction algorithm, i.e. a procedure
that tries to map distances based on multiple dimensions on a 2d or 3d space,
and surrounds its visual representation with interactive features. These ad-
ditional features, tailored for the exploration of distributional models, set the
tool apart from a static scatterplot, or even from a default interactive plot.

To put it in Card, Mackinlay & Shneiderman (1999: 6)’s words: “ ‘The pur-
pose of visualization is insight, not pictures’. The main goals of this insight are
discovery, decision making and explanation”2. Indeed, the kind of qualitative
exploration achieved through this tool would have been extremely hard without
it, if not impossible. In the first place, the tool sets up a workflow that goes
from the exploration of the similarity between models and the role of parameter
settings through the qualitative comparison of selections models to the detailed
exploration of individual models. It is built to facilitate a fluid exploration and
interconnection between levels of analysis. The tool offers simultaneous, in-

2Emphasis from the original.
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terconnected access to the actual output of a model (as coordinates on a 2d
plane), the variation of parameter settings, semantic annotation, metadata of
the corpora and frequency data on the context words. The interaction of these
different aspects of distributional models in a practical visual interface makes
patterns and insights accessible that would not have been found any other way.

Because of this, the visualization tool is a key component of this dissertation.
It is in these scatterplots that we find the clouds: clusters of similar tokens that
come together in denser areas of the (reduced) semantic space. In an actual
case study involving the methodological workflow presented here, a lot of the
technicalities go into generating the clouds, but a large part of the analysis
involves looking at them and finding shapes: cloudspotting.

1.4 Nephological Semantics
The research presented in this dissertation is part of a larger project within
the qlvl research unit, the bof C1-project (3H150305) “Nephological Seman-
tics: using token clouds for meaning detection in variationist linguistics”, with
Dr. Prof. Dirk Geeraerts as Principal Investigator. Both the Python module
for the creation of the models, written by Tao Chen, and the visualization
tools for their analysis, designed by Thomas Wielfaert and myself, are prod-
ucts of this project. Moreover, this dissertation would not be what it is without
the integration of the case studies, questions and insights discussed here with
other branches of the project, and without the feedback loop on ideas, tests
and thoughts on the different techniques.

The main objective of the project is to develop — and understand — ap-
propriate methods for the retrieval of semantic information from corpus data,
addressing concerns that stem from a longer tradition of usage-based lexical re-
search. Geeraerts, Grondelaers & Bakema (1994) and Geeraerts, Grondelaers
& Speelman (1999) embark in comprehensive, detailed lexicological analyses
of the lexical fields of clothing and football terms in Dutch. Their approach
is referential: Geeraerts, Grondelaers & Bakema (1994), for instance, collect
pictures and descriptions of garments from Dutch and Flemish magazines and
describe each clothing item in terms of a variety of features, such as the length
of the sleeve. Based on the relationship between the (configurations of) fea-
tures and the items used to name the objects, they developed a model of lexical
variation that takes into account prototypicality and salience in terms of se-
masiological, onomasiological and contextual variation. However, the manual
and detailed identification of features at a large enough scale is painstaking
and time consuming, if at all feasible. In contrast, machine-readable linguis-
tic material is available, more or less accessible and, given the right resources,
processable. It will not provide the same kind of information as a referential
approach, but it is more easily scalable to large amounts of data.

In the context of this project, token-level models for semasiological research
are introduced by Heylen, Speelman & Geeraerts (2012) and Heylen et al.
(2015). Another work-package, culminating in De Pascale (2019)’s PhD dis-
sertation, applies the technique to lexical lectometric research, i.e. measuring
distances between language varieties based on their naming choices for differ-
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ent concepts. The visualization tool, as mentioned before, is first described in
Wielfaert et al. (2019). Between their work, this dissertation and further case
studies taking place in the last year, the project is covering the application of
token-level vector space models on semasiological, onomasiological and lecto-
metric studies in varieties of Dutch and Mandarin, at both a synchronic and a
diachronic level.

1.5 Structure of the dissertation
As a product of the Nephological Semantics project, this dissertation aims to
contribute to both the development and understanding of distributional models
for lexical semasiological research. It brings together the theoretical perspec-
tive on semantics from Cognitive Linguistics with computational methods and
visual analytics in the hope of paving the way for future research along the same
lines. With that in mind, the three chapters of the first part of this disserta-
tion, The cloudspotter’s toolkit, will focus on the technical or methodological
side of the project. Chapter 2 will describe the procedure to create clouds and
the parameter settings explored, taking care to be thorough and specific about
the technical decisions that resulted in the final models. Then, Chapter 3 will
showcase the visualization tool designed by Thomas Wielfaert and myself as
well as a ShinyApp extension that provides additional functionalities. Finally,
Chapter 4 will illustrate the dataset on which the models were tested: the se-
lection of lemmas and the questions they try to address, the collection of data
and the annotation procedure.

The notion behind token-level models, i.e. that we can represent meaning
differences in terms of distributional differences, and in particular the image
of a scatterplot that translates these intuitions into an interpretable picture,
sounds good. Alas, the reality is not as bright as we could have wished for, and
the skies of distributional semantics have all but a stable weather. Hopefully,
this dissertation can offer a guide for researchers who would dare to tread these
waters. Therefore, the three chapters in the second part, The cloudspotter’s
handbook, will discuss the results of the analyses, with an emphasis on crucial
assumptions that clash with the data. First, Chapter 5 debunks the idea of a
perfect cloud emerging from the ocean of the corpus. Clouds come in many
different shapes, caused by different phenomena of distributional behaviour,
and thus this chapter offers a classification of what we might encounter. Chap-
ter 6 follows with a linguistic perspective on the variation of these shapes and
discusses what we can or we cannot find in these models. Finally, Chapter 7
shows how no set of parameter settings offers the best solution across the board
— not even close. Instead, the same parameter settings may result in different
shapes for different lemmas, and they have to be tailored to the specific lemma
to capture the relevant semantic structure.

An enthusiastic and hopeful aspiring cloudspotter might feel discouraged by
the variability — bordering on unpredictability — of these clouds. I wouldn’t
blame them. However, in spite of the diversity of shapes, of semantic phenom-
ena and of parameter settings to explore, the methodology can offer interesting
insights. They are partial insights, but insights nonetheless, and once we know
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what to expect from clouds, we can focus on acquiring them. In that perspec-
tive, the third and final part of this dissertation, The cloudspotter’s cheatsheet,
will close with a general practical guide, a summary of suggestions for further
research and an overall conclusion.
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Chapter 2

From corpora to clouds

The main goal of the methodological framework presented here is to explore
semasiological structure from textual data. The starting point is a corpus,
i.e. a selection of texts, and one of the most tangible outputs is what we will
call clouds: the visual representation of textual patterns as dense areas in a 2d
scatterplot. In this chapter we will explain how to generate clouds from the
raw, seemingly indomitable ocean of a corpus.

First, we will describe how token-level vector space models are created:
these are mathematical representations of the occurrences of a lexical item. We
will focus on context-counting models, but this is by no means the only viable
path. Other techniques, such as BERT (Devlin et al. 2019)1, that can also
generate vectors for individual instances of a word, could be used for the first
stage of this workflow. Section 2.1 will describe the process and the rationale
without assuming a strong mathematical background for the reader, leaving
the deeper technicalities to Section 2.2. In Section 2.3, we will break apart
the workflow into the multiple choices that the researcher needs to make and
that result in a potentially infinite number of models, while Section 2.4 briefly
presents a method to select a few representative models. Finally, Section 2.5
summarizes the chapter.

2.1 A cloud machine
At the core of vector space models, aka distributional models, we find the
Distributional Hypothesis, which is often linked to Harris’s observation that
“difference of meaning correlates with difference of distribution” (1954: 156),
but also to Firth’s “You shall know a word by the company it keeps” (1957:
11) and Wittgenstein’s “the meaning of a word is its use in the language”2

(1958: 20). In other words, items that occur in similar contexts in a given
corpus will be semantically similar, while those that occur in different contexts

1See also de Vries et al. (2019) for a Dutch version.
2The famous quote is preceded by an appropriate nuance: “For a large class of cases —

though not for all — in which we employ the word ‘meaning’ it can be defined thus: the
meaning of a word is its use in the language”.

17
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will be semantically different (Jurafsky & Martin 2020: Ch. 6, Lenci 2018).
Crucially, this does not imply that we can describe an individual item with their
distributional properties, but that comparing the distribution of two items can
tell us something about their semantic relatedness (Sahlgren 2006: 19).

Firth (1957) inspired generations of corpus linguists to look at collocations
as part of the semantic description of a lemma. The Birmingham school, pio-
neered by John Sinclair, used co-occurrence frequency information to describe
a lexical item by the set of those context words most attracted to them. Due to
the skewed distribution of word frequencies, known as Zipf’s law, this attraction
cannot be measured in terms of raw co-occurrence frequencies. For example,
the most frequent lemma in the (Dutch) corpus used for this research, dis-
carding punctuation, is de ‘the (fem./masc.)’, which occurs 28.1 million times.
The second most frequent lemma, van ‘from’, occurs 12.6 milion times, and it
is followed by het ‘the (neutral)’ and een ‘a, an’, with corresponding frequen-
cies of 11.7 and 11.1 million times each. For every 100 words in the corpus,
excluding punctuation, 14 are one of these four words. Of the total of 4.6
million different words, 61% are hapax legomena, i.e. they occur once, and 172
lemmas cover 50% of all the occurrences. As a consequence, co-occurrences
with very frequent words are not as informative as those with less frequent
words, and hence raw co-occurrence frequencies are transformed to measures
of association strength, such as mutual information (see Section 2.2.1) or
t-score, among others (for an overview see Evert 2009, Gablasova, Brezina &
McEnery 2017). In collocational studies, researchers typically set a threshold
of association strength and only look at the context words that surpass it.

At their core, context-counting vectors are lists of association strength
values. Each word is represented by its association strength to a long array of
words that it might co-occur with, as shown in Table 2.1. Unlike in collocation
studies, low values — or even lack of co-occurrence — are not excluded, but
used in the comparison with other words that might. Going back to the Firthian
motto, a collocational study would describe me with the list of people that I
talk to the most, whereas a distributional model would compare me to someone
else based on who either of us talks to and how often we talk to them. The
more people we have in common, the more similar we are, but people that
neither of us talks to have no impact on the comparison.

Table 2.1 shows small vectors representing the English nouns linguistics, lex-
icography, research and chocolate, as well as the adjective computational, with
co-occurrence information obtained from the GloWbE (Global Word-based En-
glish) corpus. The values are their association strength pmi with each of the
lemmas in the columns: the higher the values, the stronger the attraction be-
tween the word in the row and the word in the column (See Section 2.2.1).
From a collocational perspective, linguistics is strongly attracted to both lan-
guage and English, i.e. they occur very often in a span of 10 words from each
other, considering their individual frequencies; it is less attracted to word and to
speak, and does not co-occur with either to eat or Flemish within that window,
in this corpus.

Each row in Table 2.1 is a vector coding the distributional information of
the lemma it represents. By lemma we refer to the combination of a stem and
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Table 2.1: Small example of type-level vectors, with pmi values based on a
symmetric window of 10. Frequency data extracted from GloWbE.

target language/n word/n flemish/j english/j eat/v speak/v
linguistics/n 4.37 0.99 - 3.16 - 0.41
lexicography/n 3.51 2.18 - 2.19 - 2.09
computational/j 1.6 0.08 - -1 - -1.8
research/n 0.2 -0.84 0.04 -0.5 -0.68 -0.38
chocolate/n -1.72 -0.53 1.28 -0.73 3.08 -1.13

Note:
Part-of-speech is indicated after a slash: n = noun, j = adjective, v = verb

a part of speech, e.g. chocolate/n covers chocolate, chocolates, Chocolate, etc.
These vectors are meant to code the distributional behaviour of the linguistic
forms they represent — in this case lemmas —, in order to operationalize the
notion of distributional similarity and, consequently, model their meaning. For
example, in Table 2.1 the first two rows, representing linguistics and lexicogra-
phy, are similar to each other: both words have a similar attraction to language
and to English, even if the values for word and to speak are more different. More
importantly, they are more similar to each other than to other rows in the ta-
ble, which have lower values for those four columns and might even co-occur
with Flemish and to eat as well. The Distributional Hypothesis expresses the
observation that words that are distributionally similar, like linguistics and
lexicography, are semantically similar or related, whereas words that are distri-
butionally different, like linguistics and chocolate, are semantically different or
unrelated.

The rows in this table are type-level vectors: each of them aggregates over
all the attestations of a given lemma in a given corpus to build an overall profile.
As a result, it collapses the internal variation of the lemma, i.e. its different
senses or semasiological structure. In order to uncover such information, we
need to build vectors for the individual instances or tokens, relying on the same
principle: items occurring in similar contexts will be semantically similar. For
instance, we might want to model the three (artificial) occurrences of study in
(1) through (3), where the target item is in bold and some context words are
in italics.

(1) Would you like to study lexicography?
(2) They study this in computational linguistics as well.
(3) I eat chocolate while I study.

Given that, at the aggregate level, a word can co-occur with thousands of
different words, type-level vectors can include thousands of values. In contrast,
token-level vectors can only have as many nonzero values as the individual
window size comprises, which drastically reduces the chances of overlap between
vectors. In fact, the three examples don’t share any item other than the target.
As a solution, inspired by Schütze (1998), (a selection of) the context words
around the token is replaced with their respective type-level vectors (Heylen,
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Table 2.2: Small example of token-level vectors of three artificial instances of
to study.

target language/n word/n english/j speak/v flemish/j eat/v
study1 4.37 0.99 3.16 0.41 0.00 0.00
study2 5.97 1.07 2.16 0.00 0.00 0.00
study3 0.00 0.00 0.00 0.00 1.28 3.08

Speelman & Geeraerts 2012, Heylen et al. 2015, De Pascale 2019). Concretely,
example (1) is represented by the vector for its context word lexicography, that
is, the second row in Table 2.1; example (2) by the sum of the vectors for
linguistics (row 1) and computational (row 3); and example (3) by the vector
for chocolate (row 5). This not only solves the sparsity issue, ensuring overlap
between the vectors, but also allows us to find similarity between (1) and (2)
based on the similarity between the vectors for lexicography and linguistics. As
we will see in Section 2.3, we can even use the association strength between the
context words and the target type, i.e. to study, and give more weight to the
context words that are more characteristic of the lemma we try to model. The
result of this procedure is a co-occurrence matrix like the one shown in Table
2.2. Each row represents an instance of the target lemma, e.g. to study, and
each column, a lemma occurring in the corpus3; the values are the (sum of the)
association strength between the words that occur around the token, i.e. their
first-order context words, and each of the words in the columns, i.e. the
second-order context words. In addition, all negative and missing values
value have been set to zero, due to the unreliability of negative pmi values (see
Section 2.2.1).

The next step in the workflow is to compare the items to each other. We
can achieve this by computing cosine distances between the vectors (see Section
2.2.2 for the technical description). The resulting distance matrix, shown in
Table 2.3, tells us how different each token is to itself, which takes the minimum
value of 0, and to each of the other tokens, with a maximum value of 1. We can
see that (1) and (2) are very similar to each other, because they co-occur with
similar context words, i.e. linguistics and lexicography, but drastically different
from (3), which was modelled based on chocolate. The specific selection of
context words is crucial: if we had selected computational but not lexicography
to model (2), it would have resulted in a larger difference with (1). The series
of choices that we can make and that have been made for this research project
are discussed in Section 2.3.

Table 2.3 is small and simple, but what if we had hundreds of tokens?
The more items we compare to one another, the larger and more complex
the distance matrix becomes. In order to interpret it, we need more stages
of processing. On the one hand, dimensionality reduction techniques such as

3Which lemmas in particular are a matter for Section 2.3.4, but in any case, lemmas that
do not co-occur with any of the context words of the tokens will have zeros in all the rows
and therefore be dropped.
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Table 2.3: Cosine distance matrix between the three artificial instances of to
study.

study1 study2 study3

study1 0.00 0.04 1
study2 0.04 0.00 1
study3 1.00 1.00 0

mds, t-sne and umap, which will be discussed in Section 2.2.3, offer us a way
of visualizing the distances between all the models by projecting them to a 2d
space. We can then represent each model into a scatterplot, like in the plots of
Figure 2.1, where each point represents a token, and their distances in 2d space
approximate their distances in the multidimensional space of the co-occurrence
matrix. Visual analytics, such as the tool described in Chapter 3, can then help
us explore the scatterplot to figure out how tokens are distributed in space, why
they form the groups they form, etc.

Word Sense Disambiguation makes use of clustering algorithms to extract
clusters of similar tokens from their models. The idea behind it is that, if
distributional similarity correlates with semantic similarity, groups of similar
tokens should share the same sense and have a different sense from other groups
of tokens. In Chapter 6 we will see to what degree this assumption holds in
this data and with these methods.

The final step in our workflow is, then, the combination of dimensionality
reduction and clustering, which results in the right plot of Figure 2.1: by
means of dimensionality reduction, tokens are located in a scatterplot so that
distributional similarities are approximated as spatial similarities, and groups
of similar tokens are assigned different colours. In previous research, which did
not integrate clustering procedures in this manner, the term cloud was used to
refer to a full model (Heylen et al. 2015, Wielfaert et al. 2019, De Pascale 2019,
Montes & Heylen Submitted). In this study, instead, cloud will refer to each
of the clusters, identified by colours in the scatterplot.

2.2 The chemistry of cloud making
A typical vector space model is an item-by-feature matrix: its rows code items,
its columns code features, and its cells code information related to the fre-
quency with which the items and features co-occur. The first distributional
models counted the occurrences of words in documents and represented them
in word-by-document matrices; the models described here are token-by-feature
matrices, in which the rows are attestations of a lexical item and the features
are second-order co-occurrences, i.e. context words of the context words of the
token. Turney & Pantel (2010) offer an overview of different kinds of matrices,
based on the items modelled and the features used to describe them. Be-
sides matrices, vector space models can be tensors, which are generalisations
of matrices for more dimensions and can allow for more complex interactions,
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Figure 2.1: 2d representation of Dutch hachelijk ‘dangerous/critical’.

e.g. subject-verb-object triples in Van de Cruys, Poibeau & Korhonen (2013);
see also Lenci (2018).

Models can be based on co-occurrence counts, as is the case in these studies,
or on machine-learning algorithms trained to predict the context around a
word or fill in an empty slot given a few words around it. These context-
predicting models use the weights of their neural networks as features in the
vectorial representations of the words they predict. A number of papers have
explored which kind of models work best for different tasks, with uncertain
results (Baroni, Dinu & Kruszewski 2014, Levy, Goldberg & Dagan 2015). As
explained before, such context-predicting models will not be explored in this
dissertation, although their integration would be interesting for further avenues
of research.

The workflow described in the previous section relies on mathematical prin-
ciples to obtain linguistic patterns from a (mostly) raw corpus. A full under-
standing of the formulae that underlie each step is not necessary to grasp the
gist of this methodology, but it is required for an appropriate implementation.
In this section, we will take a deeper look into the technical aspects the machin-
ery behind the process, in particular association strengths, similarity metrics,
dimensionality reduction techniques and clustering algorithms.

2.2.1 Association strength: PMI
The distribution of words in a corpus follows a power law: a few items are ex-
tremely frequent, and most of the items are extremely infrequent. Association
measures transform raw frequency information to measure the attraction be-
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tween two items while taking into account the relative frequencies with which
they occur. They typically manipulate, in different ways, the frequency of the
node 𝑓(𝑛), the frequency of its collocate 𝑓(𝑐), their frequency of co-occurrence
𝑓(𝑛, 𝑐) and the size of the corpus 𝑁 . Evert (2009) and Gablasova, Brezina
& McEnery (2017) offer an overview of how different measures are computed
and used in corpus linguistics; Kiela & Clark (2014) compare measures used in
distributional models.

In the studies discussed here, I will only use (positive) pointwise mutual
information, or (p)pmi (Church & Hanks 1989), one of the most popular
measures both in collocation studies and distributional semantics (Bullinaria
& Levy 2007, Kiela & Clark 2014, Jurafsky & Martin 2020, Lapesa & Evert
2014). Its formula is shown in equation (2.1), where 𝑝(𝑛) = 𝑓(𝑛)

𝑁 , i.e. the
proportion of occurrences in the corpus that correspond to 𝑛.

𝐼(𝑛, 𝑐) = log 𝑝(𝑛, 𝑐)
𝑝(𝑛)𝑝(𝑐) = log( 𝑓(𝑛, 𝑐)

𝑓(𝑛)𝑓(𝑐)𝑁) (2.1)

Negative pmi values tend to be unreliable, so positive pmi or ppmi is used,
in which the negative pmi values are turned to zeros (Bullinaria & Levy 2007,
Kiela & Clark 2014, De Pascale 2019, Jurafsky & Martin 2020: 109). Further-
more, pmi is known for its bias towards infrequent events: when either 𝑝(𝑛)
or 𝑝(𝑐) is very low, pmi tends to be very high. In collocation studies, this bias
may be counteracted by combining pmi filters with other measures that favour
frequent co-occurrences, such as t-scores or log-likelihood ratio (McEnery, Xiao
& Tono 2010). In distributional semantics, the accuracy of models that rely on
ppmi seems not to be affected by the issue presented by this bias; moreover, in
these studies any lemma with 𝑓(𝑛) < 217, i.e. occurring less than once every
two million tokens, was excluded, to avoid too sparse, uninformative vectors.

2.2.2 Similarities and distances: cosine
After obtaining the token-by-feature matrices, the distances between the vec-
tors must be computed. Typically, the implementations for the dimensionality
reduction and clustering can take the item-by-feature matrices as input and
compute the distances under-the-hood, but they do not necessarily offer the
option of computing our distance measure of choice, cosine.

Cosine is a measure of similarity between vectors v and w and is defined
in equation (2.2); it coincides with the normalised dot product of the vectors
(Jurafsky & Martin 2020: 105).

cosine(v, w) = v ⋅ w
|v| |w| =

𝑁
∑
𝑖=1

𝑣𝑖𝑤𝑖

√
𝑁
∑
𝑖=1

𝑣2
𝑖 √

𝑁
∑
𝑖=1

𝑤2
𝑖

(2.2)

For positive values, e.g. when using ppmi, the cosine similarity ranges be-
tween 0 and 1: it will be 1 between identical vectors and 0 for orthogonal
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vectors, which do not share nonzero dimensions, like study1 and study3 in Ta-
ble 2.2. Cosine is sensitive to the angle between the vectors, and not to their
magnitude: the similarity between study1 and a vector created by multiplying
all the cells in study1 by any constant will still be 1.

Cosine similarity is the most common metric in distributional models (Ju-
rafsky & Martin 2020: 105) and has been shown to outperform other measures,
especially when combined with ppmi (Kiela & Clark 2014, Lapesa & Evert 2014,
Bullinaria & Levy 2007)4. One of the ways in which it is used is for semantic
similarity tasks: the nearest neighbours of an item are extracted, by select-
ing the vectors with highest cosine similarity to the target vector. In these
studies, similarities are usually transformed to distances by inverting the scale
(cosinedist = 1−cosinesim), so that identical vectors — and each vector to itself
— have a cosine distance of 0 and orthogonal vectors have a cosine distance of
1, as shown in Table 2.3.

Before applying dimensionality reduction or clustering algorithms, the co-
sine distances were further transformed with the aim of giving more weight
to short distances, i.e. nearest neighbours, and decreasing the impact of long
distances. For each token vector v with 𝑛 dimensions, we define the trans-
formed vector vtransformed as vtransformed𝑖

= log(1 + log 𝑟𝑎𝑛𝑘(v)𝑖) for each 𝑖,
with 1 ≤ 𝑖 ≤ 𝑛, and where 𝑟𝑎𝑛𝑘(v)𝑖 is the similarity rank of the 𝑖th value in v.
For example, if originally we have the distances v = [0, 0.2, 0.8, 0.3], the rank
transformation returns 𝑟𝑎𝑛𝑘(v) = [1, 2, 4, 3], which after the first logarithm
transformation becomes [0, 0.693, 1.39, 1.099] and, after the second transforma-
tion, vtransformed = [0, 0.52, 0.86, 0.74]. On the one hand, the magnitude of the
distance is not as important as its ranking among the nearest neighbours. On
the other, the lower the ranking, the smaller the impact: the difference between
the final values for ranks 1 and 2 is larger than between ranks 2 and 3. The new
matrix, where each row v has been replaced with its vtransformed, is converted
to euclidean distances.

While cosine distances are used to measure the similarity between token-
level vectors, euclidean distances will be used to compare two vectors of the
same token across models, and thus compare models to each other. Concretely,
let’s say we have two matrices, A and B, which are two models of the same
sample of tokens, built with different parameter settings, and we want to know
how similar they are to each other, i.e. how much of a difference those parameter
settings make. Their values are already transformed cosine distances. A given
token 𝑖 has a vector a𝑖 in matrix A and a vector b𝑖 in matrix B. For example,
𝑖 could be example (2) above, and its vector in A is based on the co-occurrence
with computational and linguistics, as shown in Table 2.2, while its vector in
B is only based on computational. The euclidean distance between a𝑖 and b𝑖
is computed with the formula shown in equation (2.3). After running the same
comparison for each of the tokens, the distance between the models A and B is
then computed as the mean of those tokenwise distances across all the tokens
modelled by both: 𝑑(A, B) = ∑𝑛

𝑖=1 𝑑(a𝑖,b𝑖)
𝑁 . Alternatively, the distances between

models could come from procrustes analysis5, like Wielfaert et al. (2019) do,
4Kiela & Clark (2014) also recommend a Correlation similarity.
5Run with vegan::procrustes() (Oksanen et al. 2020)
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which has the advantage of returning a value between 0 and 1. However, this
method is much faster and returns comparable results.

𝑑(a𝑖, b𝑖) =
√√√
⎷

𝑛
∑
𝑖=𝑗

(𝑎𝑗 − 𝑏𝑗)2 (2.3)

2.2.3 Dimensionality reduction for visualization: t-SNE
Dimensionality reduction algorithms try to reduce the number of dimensions
of a high-dimensional entity while retaining as much information as possible.
In distributional models, they have two main applications: one that reduces
thousands of dimensions to a few hundred, and one that reduces them to only
two.

The first application of dimensionality reduction, with techniques like svd
(Singular Value Decomposition), is meant to deal with the sparsity of high-
dimensional vectors. Due to the frequency distribution discussed above, many
words never occur in the vicinity of each other, resulting in many zeros in their
context-counting representations and therefore inflated differences between the
vectors. In particular, techniques like Latent Semantic Analysis (Landauer &
Dumais 1997) are based on the observation that the dimensions obtained from
this process are semantically interpretable. It could also be used for token-
level spaces, but the comparisons discussed in De Pascale (2019: 246) indicate
that they don’t necessarily perform better than non reduced spaces. Both
dimensionality reduction techniques and neural networks are suggested as ways
of condensing very long, sparse vectors (Jurafsky & Martin 2020, Bolognesi
2020). We will not go into the technical aspects because these techniques
have not been implemented in the studies described here. Instead, we have
compared vectors of different lengths based on other selection methods for the
second-order features. Combining them with svd is a possible avenue for future
comparisons.

The second application of dimensionality reduction is used for visualization
purposes. A token-by-feature matrix can be understood as a multidimensional
space: each of the columns is a dimension of space and the values of cells are
the coordinates of the items in each of these dimensions. That is why we can
use cosine distances, which measures angles: if we draw a vector from the origin
(zero in all dimensions) to the point with those coordinates, it diverges from
other vectors with a given angle that grows wider as the vectors diverge, leading
to larger cosine distances. We can mentally picture or even draw positions, vec-
tors and angles in up to 3 dimensions, but distributional models have hundreds
if not thousands of dimensions. These applications of dimensionality reduction,
then, are built to project the distances between items in the multidimensional
space to euclidean distances in a low-dimensional space that we can visualize.
The different implementations can receive the token-by-feature matrix as in-
put, but will not typically compute cosine distances between the items, so the
distance matrix is provided as input instead. The literature tends to go for
either multidimensional scaling (mds) or t-stochastic neighbour embeddings
(t-sne); recently, an interesting alternative called umap has been introduced,
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which I’ll discuss shortly.
The first option, mds, is an ordination technique, like principal components

analysis (pca). It has been used for decades in multiple areas (e.g. Cox & Cox
2008); its most relevant application for this case, non-metric multidimensional
scaling, was developed by Kruskal (1964). It tries out different low-dimensional
configurations aiming to maximize the correlation between the pairwise dis-
tances in the high-dimensional space and those in the low-dimensional space:
items that are close together in one space should stay close together in the
other, and items that are far apart in one space should stay far apart in the
other. The output from mds can be evaluated by means of the stress level,
i.e. the complement of the correlation coefficient: the smaller the stress, the
better the correlation between the measures. Unlike pca, however, the dimen-
sions are not meaningful per se; two different runs of mds may result in plots
that mirror each other while representing the same thing. Nonetheless, the R
implementation vegan::metaMDS() (Oksanen et al. 2020) rotates the plot so
that the horizontal axis represents the maximum variation. In cognitive lin-
guistics literature both metric (Koptjevskaja-Tamm & Sahlgren 2014, Hilpert
& Correia Saavedra 2017, Hilpert & Flach 2020) and non-metric mds (Heylen,
Speelman & Geeraerts 2012, Heylen et al. 2015, Perek 2016, De Pascale 2019)
have been used.

The second technique, t-sne (van der Maaten & Hinton 2008, van der
Maaten 2014), has also been incorporated in cognitive distributional semantics
(Perek 2018, De Pascale 2019). It is also popular in computational linguistics
(Smilkov et al. 2016, Jurafsky & Martin 2020); in R, it can be implemented with
Rtsne::Rtsne() (Krijthe 2018). The algorithm is quite different from mds: it
transforms distances into probability distributions and relies on different func-
tions to approximate them. Moreover, it prioritises preserving local similarity
structure rather than the global structure: items that are close together in the
high-dimensional space should stay close together in the low-dimensional space,
but those that are far apart in the high-dimensional space may be even farther
apart in low-dimensional space. Compared to mds, we obtain nicer, tighter
clouds (see Figure 2.2), but the distance between them is less interpretable:
even if we trust that tokens that are very close to each other are also simi-
lar to each other in the high-dimensional space, we cannot extract meaningful
information from the distance between these groups.

In addition, it would seem that points that are far away in a high-
dimensional space might show up close together in the low-dimensional
space (Oskolkov 2021). In contrast, Uniform Manifold Approximation and
Projection, or umap (McInnes, Healy & Melville 2020), penalizes this sort
of discrepancies. It would be an interesting avenue for further research, but
a test on the current data did not reveal substantial improvements between
t-sne and umap that would warrant the replacement of the technique within
the duration of this project (see Figure 2.2 for an example with default
parameters. In other models, differences include longer shapes). Other known
advantages such as increased speed were not observed in the small samples
under consideration — in fact, the R implementation of umap (Konopka
2020) was even slower.
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NMDS t-SNE

UMAP

Figure 2.2: Two 2d representations of the same model of hachelijk ‘danger-
ous/critical’: bound5all-ppmiweight-focall. Non-metric mds on the top left,
t-sne to its right and umap at the bottom. Colours indicate hdbscan clusters.

Unlike mds, t-sne requires setting a parameter called perplexity, which
roughly indicates how many neighbours the preserved local structure should
cover. Low values of perplexity lead to numerous small groups of items, while
higher values of perplexity return more uniform, round configurations (Watten-
berg, Viégas & Johnson 2016). I have explored perplexity values of 10, 20, 30
and 50, and for this dataset 30 — the default value in the R implementation —
has proved to be the most stable and meaningful. Unless otherwise stated, the
figures in this text — including Figure 2.1 — will illustrate t-sne token-level
representations with perplexity of 30. To represent distances between models,
instead, non-metric mds is used (only in Section 3.2).

For both mds and t-sne we need to state the desired number of dimensions
before running the algorithm — for visualization purposes, the most useful
choice is 2. Three dimensions are difficult to interpret if projected on a 2d space,
such as a screen or paper (Card, Mackinlay & Shneiderman 1999, Wielfaert et
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al. 2019). As we mentioned before, the dimensions themselves are meaningless,
hence no axes or axis ticks will be included in the plots. However, the scales
of both coordinates are kept fixed: given three points 𝑎 = (1, 1.5), 𝑏 = (1, 0.5)
and 𝑐 = (0, 1.5), the distance between 𝑎 and 𝑏 (1 unit along the 𝑥-axis) will be
the same as the distance between 𝑎 and 𝑐 (1 unit along the 𝑦-axis).

2.2.4 Clustering: HDBSCAN
In word sense disambiguation tasks, the vectorial representations of different
attestations are clustered into groups of similar tokens. There is a variety of
clustering algorithms, appropriate for different kinds of data and structures. I
will not offer an overview of the options, but only describe the techniques used
in these studies. This section is dedicated to hdbscan, the algorithm that
returns the coloured clusters in Figures 2.1 and 2.2. Section 2.4 will discuss
pam, which will be uses to select representative models.

Hierarchical Density-Based Spatial Clustering of Applications with Noise,
hdbscan for the friends (Campello, Moulavi & Sander 2013), is a clustering
algorithm, i.e. a procedure to identify groups of similar items that are different
from other groups. Unlike its better-known cousins, it does not try to place all
the items in the sample in different groups, but instead assumes that the dataset
might be noisy and that the items may have various degrees of membership to
their respective clusters. In addition, as a density-based algorithm, it tries to
discriminate between dense areas, i.e. groups of elements that are very similar
to each other, from sparse areas, i.e. larger distances between the elements.

In hdbscan, the density of the area in which we find a point 𝑎 is estimated
by calculating its core distance 𝑐𝑜𝑟𝑒𝑘(𝑎), which is the distance to its 𝑘 nearest
neighbour, 𝑘 being a parameter 𝑚𝑖𝑛𝑃𝑡𝑠−1. This measure is at the base of the
mutual reachability distance, shown in equation (2.4), which is used to compute
a new distance matrix for a single-linkage hierarchical clustering algorithm. As
a result, the items are organised in a hierarchical tree, from which clusters
are selected based on the 𝑚𝑖𝑛𝑃𝑡𝑠 requirement and their densities. A related
notion to 𝑐𝑜𝑟𝑒𝑘(𝑎) is 𝜀, which is defined as the radius around a point in which
𝑚𝑖𝑛𝑃𝑡𝑠 − 1 can be found.

𝑑𝑚𝑟𝑒𝑎𝑐ℎ(𝑎, 𝑏) = max(𝑐𝑜𝑟𝑒𝑘(𝑎), 𝑐𝑜𝑟𝑒𝑘(𝑏), 𝑑(𝑎, 𝑏)) (2.4)
In dbscan, we need to set both 𝑚𝑖𝑛𝑃𝑡𝑠 and a 𝜀 threshold; the procedure

is different, but its result is equivalent to cutting the hierarchical tree from
hdbscan at a fixed 𝜀, so that the items above that threshold are discarded as
noise, and those below it are grouped into their respective clusters. In contrast,
its hierarchical version, hdbscan, implements variable thresholds to maximize
the stability of the clusters, and therefore only requires us to input 𝑚𝑖𝑛𝑃𝑡𝑠6.

In R, the algorithm can be implemented with dbscan::hdbscan() (Hahsler
& Piekenbrock 2021). Its input can be an item-by-feature matrix or, like in this
case, a distance matrix. The output includes, among other things, the cluster
assignment, with noise points assigned to a cluster 0, membership probability

6For a friendly description of how the algorithm works, I recommend McInnes, Healy &
Astels (2016) or even their conference presentations in YouTube.
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values, which are core distances normalized per cluster, and 𝜀 values, which
can be used as an estimate of density.

2.3 Making it your own: parameter settings
Building models implies making a number of choices, from the source of the
data and the unit of analysis, to the definition of what counts as context, to
the techniques and parameters for visualization and clustering. Making these
decisions explicit is crucial: on the one hand, they are necessary to interpret
the models themselves, but on the other, they are essential for reproducibility.

For each of the 32 lemmas studied in this project, 200-212 models were cre-
ated, resulting from the combination of parameter settings meant to define the
first-order and second-order contexts. Other choices have been kept fixed across
all models in this study, for various reasons, among which are practicality and
best performance in the literature. The parameter space is virtually infinite,
and exploring even more variations did would have increased the number of
models exponentially and made the kind of thorough, qualitative descriptions
performed here infeasible. Admittedly, some of the variable parameters could
have remained fixed, and some of the fixed parameters could have been var-
ied. Such paths remain open for future projects. In this section, I will discuss
these decisions: both the ones that have remained fixed across all the studies
and the variations that characterize the multiple models under study. Fixed
decisions are not specified in the names of the models; variable parameters,
which distinguish models from each other, are coded in their names. When
mentioned in further sections, they will be described in three parts: first-order
parameters (Section 2.3.2), PPMI (Section 2.3.3) and second-order parameters
(Section 2.3.4). The values of the parameter settings will be set in monospace.

2.3.1 Fixed decisions
First, the analyses presented in this dissertation were performed on a corpus of
Dutch and Flemish newspapers: the mode is written and the genre, journalis-
tic. Called the QLVLNewsCorpus (De Pascale 2019: 30), it combines parts of
the Twente Nieuws Corpus of Netherlandic Dutch (Ordelman et al. 2007) and
the yet unpublished Leuven Nieuws Corpus. It comprises articles published be-
tween 1999 and 2004, belonging to popular and quality sources for both regions
in equal proportion7 and amounting to a total of 520 million tokens, including
punctuation. The corpus was lemmatized and tagged with part-of-speech and
dependency relations with Alpino (van Noord 2006).

Second, the unit of analysis, the lemma, was defined as a combination of
stem and part-of-speech8. This applies to items at all levels: the definition
of a target, the first-order context features and the second-order features; co-
occurrence frequencies and association strength measures are always computed

7The newspapers include Het Laatste Nieuws, Het Nieuwsblad, De Standaard and De
Morgen as Flemish sources and Algemeen Dagblad, Het Parool, NRC Handelsblad and De
Volkskrant as Netherlandic sources.

8The corpus was not lemmatized by stemmed.
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with the lemma as unit. Both distributional models and some traditions in
collocation research may use word forms instead9. On the one hand, stemming
and tagging add a layer of processing and interpretation to the text; on the
other, word forms of the same lemma tend to behave in different ways. From
a lexicographic and lexicological perspective, however, it makes sense to use
a lemma as a unit. It is the head of dictionary entries and a more typical
unit of linguistic analysis. Furthermore, the (mis)match between word forms
and lemmas strongly depends on the language under study: in languages like
Spanish, French, Japanese and Dutch, verbs can take many more different forms
than in English; conversely, Mandarin lacks morphological variation or even
spaces between what could count as words. Concretely, the word form hoop
in Dutch can correspond to the noun meaning either ‘hope’ or ‘heap’, or the
verb meaning ‘to hope’, which can also take other forms such as hopen, hoopt,
hoopte and gehoopt depending on person, number and tense. Our interest, from
a lexicological perspective, lies more in line with studying the behaviour of the
noun hoop and its meanings, than in conflating the noun with one of verbal
forms of the homographic verb.

In that respect, a practical note is in order. The target items under study
will be represented with dictionary forms in italics, followed by their approx-
imate English translations in single quotation marks: e.g. hoop ‘hope/heap’,
heilzaam ‘healthy/beneficial’, herstructureren ‘to restructure’. Context words
might be represented in figures with the stem and part-of-speech combination
used by the lemmas, e.g. word/verb, but when mentioned in text the part-of-
speech will be excluded, e.g. the passive auxiliary word. The English transla-
tions will belong to the same part-of-speech as the Dutch term in italics and be
as unambiguous as possible. When the Dutch term and its English translations
are written in the same way, no translation will be included, e.g. journalist.

Third, the context words at both first-order and second-order can, in prin-
ciple, have any part of speech — except for punctuation — and must have a
minimum relative frequency of 1 in 2 million (absolute frequency of 227) af-
ter discarding punctuation from the token count in the full QLVLNewscorpus.
There are 60533 such lemmas in the corpus.

Finally, as described in Section 2.2.1, attraction between types were mea-
sured with ppmi, computed on the full co-occurrence matrix, i.e. across the
full corpus, based on a symmetric window of 4 tokens to either side, including
punctuation; see Turney & Pantel (2010) and Kiela & Clark (2014) for alter-
natives. Token-level vectors are made by adding the type-level vectors of its
context words.10 For vector comparison, cosine distances were used and then
transformed, as explained in Section 2.2.2. The transformed cosine distances
were used both as input for visualization techniques and the clustering algo-
rithm. Both non-metric mds and t-sne with perplexity values of 10, 20, 30 and
50 were explored, but the analyses discussed in the second part of the disser-
tation are based on the output from solutions with perplexity 30. Clustering

9See Turney & Pantel (2010: 155) and Sahlgren (2008: 47-48) for a discussion and Kiela
& Clark (2014: 25) for performance comparisons.

10Alternatively, they could be multiplied or averaged, but the results were not all that
different.
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was performed with hdbscan setting 𝑚𝑖𝑛𝑃𝑡𝑠 = 8.

2.3.2 First-order selection parameters
The immediate context of a token is the first order context: therefore, first-
order parameters are those that influence which elements in the immediate
environment of the token will be included in modelling said token. This was
performed in two stages: one dependent on whether syntactic information was
used, discussed in this section, and one independent of it, shown in Section
2.3.3.

The decisions were based on a mix of literature (e.g. Kiela & Clark 2014),
tradition within the Nephological Semantics project, linguistic intuition and
generalisations over the annotation of the concordance lines. As we will see in
Chapter 4, the manual annotation procedure included selecting words in the
context of each token that were the most helpful for the disambiguation. The
window spans and dependency information of these chosen context words were
used to inform some of the decisions below.

In a first stage, the main distinction is made between models based on bag-
of-words (BOW), i.e. that do not care about word order or syntactic relationship,
and those based on dependency (i.e. syntactic) information. Within the former
group, models may vary based on whether sentence boundaries were respected,
the length of the window size, and part-of-speech filters. The latter group
includes models that select context words based on the distance between them
and their target in terms of syntactic relationships ((LEMMA)PATH models), and
models that find the context word that match specific, predefined templates
((LEMMA)REL). Each of these parameters will be described in more detail below.

The first split in BOW models distinguishes between those that include words
outside the sentence of the target (nobound) and those that do not (bound). The
goal was to make the models more comparable to dependency-based models,
which by definition only include words in the same sentence as the target.
However, models that only differ with respect to this parameter tend to be
extremely similar. More relevant is the window size: models can select context
words on a symmetric window of 3, 5, or 10 tokens to either side of the target,
including punctuation. Window sizes are typically larger for token-level models
than for type-level models (e.g. Schütze 1998, De Pascale 2019), but, at the
same time, the great majority of the context words selected in the annotation
were within the span of 3 words to either side. In practice, such a small span
tends to be too restrictive. Finally, some models refine their first-order selection
with part-of-speech filters: lex models only include common nouns, adjectives,
verbs and adverbs, while all models do not implement any restrictions. The
selection defined for lex was the result of some trial and errors, but could
use more refinement for future studies, e.g. expanding the lexical set to proper
names, pronouns or only certain prepositions. Moreover, it could be useful to
distinguish between modal verbs and auxiliaries, on one side, and other kinds
of verbs, information that is not coded in the part-of-speech tags used in this
corpus. In practice, all models tend to behave similarly to dependency-based
models, while lex tends to be redundant with ppmi-based selection, which will
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be described later. Bag-of-words models will be indicated by a sequence of
three values pointing to these three parameters: e.g. bound5all indicates a
model that respects boundaries, with a window span of 5 words to each side
and no part-of-speech filter.

The distinction between BOW and dependency-based models doesn’t depend
so much on which context words are selected but on how tailored the selection
is to the specific tokens. For example, a closed-class element like a prepo-
sition may be distinctive of particular usage patterns in which a term might
occur. However, such a frequent, multifunctional word could easily occur in the
immediate raw context of the target without actually being related to it. Un-
fortunately, just narrowing the window span doesn’t solve the problem, since
it would also drastically reduce the number of context words available for the
token and for any other token in the model. In contrast, we might also be inter-
ested in context words that are tightly linked to the target in syntactic terms
but separated by many other words in between, but widening the window to
include them would imply too much noise for this token and for any other token
in the model. A dependency-based model, instead, will only include context
words in a certain syntactic relationship to the target, regardless of the number
of words in between from a BOW perspective. To exemplify, let’s look at (4),
where herhalen ‘to repeat’, in bold, is the target, and the items in italics where
captured by a PATH model.

(4) Als de geschiedenis zich werkelijk mocht herhalen, zijn Vitales dagen
geteld. (De Morgen, 2004-08-02, Art. 98)
‘If [the] history really repeated itself, Vitales’ days are counted.’

The PATH models count the steps between a target and all the words syn-
tactically related to it and base the selection according to that distance. A
one-step dependency path is either the head of the target or its direct depen-
dent (the parent or the child, in kinship terms): in the case of (4) this includes
the reflexive pronoun zich and the modifying adverb werkelijk ‘really’, which
depend directly on it herhalen ‘to repeat’, as well as the modal mocht, on which
the target depends. A two-step dependency path is either the head of the head
of the target (grandparent), the dependent of its dependent (grandchild), or
its sibling. In (4) this includes the subject geschiedenis ‘history’, because it
is linked to the target through the modal, and Als ‘if’. All PATH models in-
clude the features in a one-step or two-step path from the target. A three-step
dependency path is either the head of the head of the head of the target (great-
grandparent), the sibling of the head of its head (great-aunt), the dependent of
the dependent of its dependent (great-grandchild), or the dependent of a sib-
ling (niece). In (4) this corresponds to de ‘the’, which depends on geschiedenis
‘history’, and geteld ‘counted’, which als ‘if’ depends on. PATHselection2 mod-
els do not include the three-steps path, and none of the PATH models include
context words beyond these steps. The threshold was set based on the most
frequent syntactic distance between the lemmas from the case studies and the
context words selected as relevant for disambiguation. Next to selection2,
PATH models take two more formats. While selection3 models include context
words up to 3 steps away from the target, PATHweight models also incorporate
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the distance information and give more weight to context words that are more
directly closely to the target in the syntactic path.

Finally, REL models base their selection on specific, predefined patterns.
For these purpose, templates tailored to the parts of speech of the target were
designed, based on the relationships between the annotated types and the con-
text words selected as most informative during the annotation process. The
most restrictive model, RELgroup1, selects the following patterns:

• For nouns: modifiers and determiners of the target; items of which the
target is modifier or determiner, and verbs of which the target is object
or subject.

• For adjectives: nouns modified by the target and direct modifiers of it
(except for prepositions); subject and direct objects of the verbs of which
the target is direct modifier or predicate complement, with up to one
modal or auxiliary in between.

• For verbs: direct objects; active and passive subjects (with up to two
modals for the active one); reflexive complement, and prepositions de-
pending directly on the target.

It is typically too restrictive: for many lemmas, it is responsible for the loss
of a large proportion of tokens which do not have context words that match
these patterns, while the remaining tokens often have only one or two context
words left. The RELgroup2 models expand the selection as follows:

• For nouns: conjuncts of the target (with or without conjunction); objects
of the modifier of the target, and items on which the target depends via
a modifier.

• For adjectives: object of the preposition modifying the target; conjunct
of the target (with or without conjunction); prepositional object of verb
modified by target (as modifier or prepositional complement).

• For verbs: conjuncts of the target; complementizers; nouns depending
through a preposition; verbal complements, and elements of which the
target is a verbal complement.

Finally, nouns also have a RELgroup3 setting that incorporates the following
relations:

• Objects and modifiers of items of which the target is subject or modifier;
subjects and modifiers of items of which the target is object or modifier;
modifiers of the modifiers of the target, and items of whose modifier the
target is modifier.

All the first-order parameters procure filters to select the context words in
the environment of each token that will be used to model it. Alternatively,
dependency information could have been included as a feature or dimension.
For example, instead of selecting zich ‘itself’ as context word of the token in (4)
based on its bag-of-word distance, part-of-speech filter or dependency relation
to the target, we could use (zich, se) i.e. “has zich as reflexive subject” as a
first-order feature. Its type-level vector then would have information on all the
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other verbs that take geschiedenis ‘history’ as its subject. For technical and
practical reasons, this was not implemented in the studies discussed here, but
would be a fruitful path for further research.

In the remainder of this dissertation, BOW will be used to refer to all bag-
of-words based models, as opposed to the dependency-based models; PATH and
REL will also be umbrella terms for the models that use the different kinds of
dependency-based selection, and more specific terms, e.g. PATHweight will be
used for finer grained distinctions.

2.3.3 PPMI selection and weighting
The PPMI parameter11 is taken outside the set of first-order parameters because
it applies to both BOW and dependency-based models, although it also affects
the selection of first order context words. The rationale behind it is that words
in the vicinity of the target token, regardless of their part-of-speech and dis-
tance, are not equally informative of the meaning of the target. For example, in
(4) geschiedenis ‘history’ and zich ‘itself’ are more informative of the meaning
of herhalen ‘to repeat’ than werkelijk ‘really’ or als ‘if’. Association strength
measures like ppmi could then be used to give more influence to the more infor-
mative context words; indeed, given a symmetric windowsize of 4 for the ppmi
computation in the QLVLNewsCorpus, the ppmi of geschiedenis ‘history’ and
zich ‘itself’ with herhalen ‘to repeat’ are 3.79 and 1.97 respectively, while the
values for werkelijk ‘really’ and als ‘if’ are 0.06 and 0.112. Heylen et al. (2015)
weight the contribution of each context word by their ppmi with the target,
and De Pascale (2019) adds ppmi and llr (log-likelihood ratio) thresholds to
the selection of context words. However, these measures are meant to represent
the relationship between types, not to distinguish between senses of the same
type: a context word may be indicative of a sense of a word and yet not be
particularly attracted to the word as a whole. An example is the English verb
to go, which due to its high frequency does not have a strong attraction to the
noun church, and yet is necessary to distinguish the specific sense of ‘religious
service’ in to go to church.

For that reason, models can take three different settings in relation to the
PPMI parameter: weight, selection and no. Both weight and selection
apply an additional filter to the output from the first-order parameters and
only select the context words with a positive pmi with the target. They are
distinct from the PPMIno models, which do not apply such thresholds. The
difference between the first two is that weight also multiplies the type-level
vector of each context word by their pmi with the target, giving words that are
more strongly associated to the target type a greater impact in the final vector
of the target. The three settings are applied to each of the models resulting
from the first-order combinations, with one exception: PATHweight models do
not combine with PPMIweight.

11I use verbatim to refer to this parameter for two reasons. First, because, like PATH, it is
also a value: the parameter itself is the association-strength-based filtering or weighting, but
it was fixed to ppmi. Second, this way it is easier to distinguish the parameter setting from
ppmi as a measure. It is not the best idea, but so it is coded into the current names of the
models.
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2.3.4 Second-order selection
The selection of second-order features influences the shape of the vectors: how
the selected first-order features are represented. Next to the fixed window size
and association measure used to calculate the values of the vectors, there are
two variable parameters. First, a part-of-speech filter may be applied. When
its value is nav, second-order features are extracted from a pool of 13771 nouns,
adjectives and verbs used in De Pascale (2019)12. The alternative, all, applies
no further filters. Second, we might reduce the length of the vector, i.e. the
number of second-order features. One of the values, 5000, selects the 5000
most frequent features from the pool remaining after the part-of-speech filter.
Pilot studies have also explored models with 10000 dimensions, but they are
very similar to the ones with 5000 dimensions.13 The other value for the vector
length is FOC, which stands for “first-order context”, and it uses the union
of first-order context words for all tokens as second-order dimensions. As a
consequence, the second-order dimensions are tailored to the context of the
sample, not necessarily so frequent, and their numbers remain in the hundreds,
rarely surpassing 1500. In practice, there is not much of a difference between
models with different second-order parameters, except for 5000all models,
which tend to perform the worst. Examination of the distance matrices between
the type-level vectors of the context words reveals that the cosine distances
between all of them are really large, probably due to the sparseness of the
vectors. I that sense, it would be interesting to compare svd matrices based on
the 5000 models with the already smaller (and presumably denser) FOC models.

2.4 The chosen ones: PAM
The multiple variable parameters return a large number of models: 212 for
each of the nouns — because of the additional REL templates — and 200 for
verbs and adjectives. As we will see in Chapter 3, we can combine distances
between the models with dimensionality reduction techniques to represent the
similarities between the models on a 2d space. In addition, if we only wanted
to evaluate the models in relation to the manual annotation, we could rank
the accuracy of their clustering solutions. However, if we want to understand
the qualitative effect of the parameter settings on the modelling, and especially
if we do not consider the manual annotation as a ground truth, we need to
examine clouds individually, and it is not feasible for a human to look at each
of the hundreds of models of each lemma.

One approach for an efficient exploration of the parameter space is to iden-
tify the settings that make the greater differences between models. For exam-
ple, if we see that models with different PPMI settings are more different from
each other than models with different vector-length settings, we would prior-
itize looking at models that differ on the former parameter, setting the latter
to a constant value. Unfortunately, the quantitative effect of parameters is not

12The selection was originally made to ensure an unbiased regional distribution of the
vectors for the lectometric studies performed in De Pascale (2019).

13Kiela & Clark (2014) discourage using vectors with more than 50,000 dimensions.
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so straightforward. First, the parameters that tend to make a big difference in
the modelling include the choice between dependency and BOW and, within it,
both window size and part-of-speech filters, as well as the distinction between
REL and PATH. The resulting combinations are still too numerous to examine
simultaneously (see Chapter 3). Second, the relevant parameters interact with
each other: PPMI often makes little difference among lex models — it tends to
be redundant, since the open-class items captured by lex tend to have higher
ppmi — but it makes a greater difference among all or dependency-based
models. Finally, the various parameter settings do not have the same impact
within each lemma, so they have to be revised for each of the lemmas under
study.

The approach based on the quantitative effect of parameter settings on the
distances between models does reduce the number of models to examine, but
not to a great degree. Given the limited number of models that we can look
at simultaneously while still making sense of them — around 8 or 9 — and
the need to cover multiple combinations of these strong parameters, we would
still need to look at four or five partially overlapping sets of 8-9 models per
lemma. For example, a set of 9 models could be generated by taking bound3 and
bound10 models with PPMIweight and FOCnav second-order vectors, in order
to look at the effect of part-of-speech filter with little window-size variation,
PATH and REL. Then, PPMIweight could be switched for PPMIno to look at
the effect in the new conditions, resulting in 9 other models. If the effect is
indeed different, which is likely, a different set of 8-9 models could then be
generated with different values of PPMI, while keeping the part-of-speech to
a constant value. These groups are not maximally different from each other:
due to the interaction between parameters, many models are extremely similar,
and a proper qualitative description becomes challenging. Moreover, a given
set of models could reveal a pattern that was not captured in a previous set of
models, and the researcher might want to go back and look for it.

An alternative approach is to use a clustering algorithm that, next to se-
lecting groups of similar models, identifies the models that represent each of
the clusters. Partition Around Medoids, or pam (Kaufman & Rousseeuw
1990), implemented in R with cluster::pam() (Maechler et al. 2021), does
exactly that. Unlike hdbscan and other clustering algorithms, it requires us
to set a number of clusters beforehand, and then tries to find the organization
that maximizes internal similarity within the cluster and distances with other
clusters. For our purpose, we have settled for 8 medoids for each lemma. The
number is not meant to achieve the best clustering solutions — no number
could be applied to all the lemmas with equal success, given their variability in
the differences between the models. The goal, instead, is to have a set of mod-
els that is small enough to visualize simultaneously (on a screen, in reasonable
size) and big enough to cover the variation across models. For some lemmas,
there might not be that much variation, and the medoids, i.e. the represen-
tative models, might be redundant with each other. However, as long as we
can cover (most of) the visible variation across models and the medoids are
reasonably good representatives of the models in their corresponding clusters,
the method is fulfilling its goal.
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The representativeness of medoids for the lemmas studied here has been
tested in different ways. We don’t require the clusters of models to be different
from each other, as long as the medoids represent them properly. Instead,
the priority was to check for patterns within the models represented by each
medoid, e.g. in terms of accuracy towards annotated senses. For example,
if a medoid tends to group senses together very well (measured for example
with kNN and SIL, as explained in Chapter 5 applied to clustering solutions),
the models it represents have similar tendencies as well. More importantly,
different patterns previously identified in the plots while exploring the models
with the first approach were looked for in the medoid selection, to corroborate
that the medoids covered at least as much variation as the more time- and
energy-consuming approach. All such patterns were found. In addition, small
random samples within each cluster of models were visually scanned — but
not thoroughly examined — to assess their similarity to their representative
medoid. In the great majority of the cases the comparison was satisfactory.
This has a wonderful effect on the visual exploration, because it lets us focus
on 8-9 models that are quite different from each other instead of multiple sets of
models with less variation. Visually, the medoids approach is more informative
and less tiresome.

As a result from these explorations, the qualitative analyses will be based
on medoids: representative models selected by pam. While this is a clustering
algorithm, in order to avoid confusion with clusters of tokens, which take centre
stage, I will avoid referring to the clusters of models as such — or, if I do, I
will specify that they are clusters of models. The preferred name will be “the
models represented by the medoid”. Given that the only clustering algorithm
used on the tokens is hdbscan, medoid will always refer to a representative
model.

2.5 Summary
The process through which token-level vector space models and the clouds stud-
ied here in particular are created, takes a number of transformative steps. In
this chapter we have broken down this process and detailed the layers of math-
ematical and linguistic processing lying between the raw corpus and the final
clouds. Next to an overall description of the workflow, the technical background
of the most important aspects was introduced in some detail. Afterwards, I
explained the parameter settings that characterize the models analyzed in this
project. Choices have been made and alternatives have been suggested: the
path taken here was one out of so many possible alternatives. In fact, at the
core of this research project is the exploration of alternatives, the investigation
of the effect of the variable parameters on the final linguistic representation,
and the search for clues, guidelines, a recipe for the clouds we seek. This
exploration combines quantitative techniques — the heart of the process of
cloud creation — with qualitative analyses meant to describe what and how
the clouds are really modelling.

By combining the vector representations with visualization techniques
and/or clustering algorithms, we can make sense of patterns that would
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otherwise escape us. Visual analytics provides us with tools to explore the
output in comfortable, intuitive — but sometimes deceiving — ways. In the
next chapter, we will look at the two visualization tools developed within
the larger project of Nephological Semantics to enable and support these
qualitative analyses.



Chapter 3

Visualization tools

Clouds are the prime matter of these study. They are condensed, information-
rich representations of patterns found in a corpus and should, according to
the Distributional Hypothesis, tell us something about the meaning of the
words under examination. But they don’t tell us anything by themselves: we
need to develop and implement tools to extract this information. Chief among
these tools is a web-based visualization tool (Montes & QLVL 2021), originally
developed by Thomas Wielfaert within the Nephological Semantics project (see
Wielfaert et al. 2019), and then continued by myself1. In this chapter we will
present its rationale and the features it offers, as an elaboration of Montes &
Heylen (Submitted).

Section 3.1 will offer an overview of the rationale behind the tool and the
minimal path that a researcher could take through its levels. Sections 3.2
through 3.4 will zoom in on each of the levels, describing the current features
and those that are still waiting on our wish list. Section 3.5 follows with the
description of a ShinyApp (Chang et al. 2021): an extension2 to the third level
of the visualization with additional features tailored to exploring the relation-
ship between the 2d representations and the hdbscan output. Finally, we
conclude with a summary in Section 3.6.

3.1 Flying through the clouds
The visualization tool described here, which I will call NephoVis, was writ-
ten in Javascript, making heavy use of the d3.js library, which was designed
for beautiful web-based data-driven visualization (Bostock, Ogievetsky & Heer
2011). The d3 library allows the designer to link elements on the page, such
as circles in an svg, dropdown buttons and titles, to data structures such as
arrays and data frames, and manipulate the visual elements based on the values

1The GitHub repository is linked to Zenodo, so that the released versions can be stored
and identified with a doi. Unfortunately, even though the foundations of the code were set
by Thomas Wielfaert, because of how the current repository came to be, he has no history
as contributor and therefore is not assigned as author in the tool’s citation.

2Currently available at https://marianamontes.shinyapps.io/Level3/
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of the linked data items. In addition, it offers handy functions for scaling and
mapping, i.e. to fit the relatively arbitrary ranges of the coordinates to pixels
on a screen, or to map a colour palette3 to a set of categorical values.

As we have seen in Chapter 2, the final output of the modelling procedure
is a 2d representation of distances between tokens, which can be visualized
as a scatterplot. Crucially, we are not only interested in exploring individual
models, but in comparing a range of models generated by variable parameters.
Section 2.2.2 discussed a procedure to measure the distance between models,
which can be provided as input for non-metric mds, and Section 2.4 presented
the technique used to select representative models, or medoids. As a result, we
have access to the following datasets for each of the lemmas:

• A distance matrix between models.
• A data frame with one row per model, the nmds coordinates based on the

distance matrix, and columns coding the different variable parameters or
other pieces of useful information, such as the number of modelled tokens.

• A data frame with one row per token, 2d coordinates for each of their
models and other information such as sense annotation (see Chapter 4),
country, type of newspaper, selection of context words and concordance
line.

• A data frame with one row per first-order context word and useful fre-
quency information.

In practice, the data frame for the tokens is split in multiple data frames
with coordinates corresponding to different dimensionality reduction algo-
rithms, such as nmds and t-sne with different perplexity values, and another
data frame for the rest of the information. In addition, one of the most
recent features of the visualization tool includes the possibility to compare
an individual token-level model with the representation of the type-level
modelling of its first-order context words. However, this feature is still under
development within NephoVis and can be better explored in the ShinyApp
extension (Section 3.5).

In order to facilitate the exploration of all this information, NephoVis is
organized in three levels, following Shneiderman’s Visual Information Seeking
Mantra: “Overview first, zoom and filter, then details-on-demand” (1996: 97).
The core of the tool is the interactive, zoomable scatterplot, but its goal and
functionality is adapted to each of the three levels. In Level 1 the scatterplot
represents the full set of models and allows the user to explore the quantitative
effect of different parameter settings and to select a small number of models for
detailed exploration in Level 2. This second level shows multiple token-level
scatterplots — one for each of the selected models —, and therefore offers the
possibility to compare the shape and organization of the groups of tokens across
different models. By selecting one of these models, the user can examine it in
Level 3, which focuses on only one at a time. Shneiderman (1996)’s mantra

3While d3 offers a variety of useful colour palettes, the visualization currently relies on a
— slightly adapted — colorblind-friendly scale by Okabe & Ito (2002). The default colour
palette for most of the figures in this disseration make use of the same palette, via the R
package colorblindr (McWhite & Wilke 2020).
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underlies both the flow across levels and the features within them: each level is
a zoomed in, filtered version of the level before it; the individual plots in Levels
1 and 3 are literally zoomable; and in all cases it is possible to select items for
more detailed inspection. Finally, a number of features — tooltips and pop-up
tables — show details on demand, such as the names of the models in Level 1
and the context of the tokens in the other two levels.

Figure 3.1: Portal of https://qlvl.github.io/NephoVis/ as of July 2021.

Currently, https://qlvl.github.io/NephoVis/ hosts the portal shown in Fig-
ure 3.1, which eventually leads the user to the Level 1 page for the lemma
of their choice4, shown in Figure 3.2 and described in more detail in Section
3.2. By exploring the scatterplot of models, the user can look for structure
in the distribution of the parameters on the plot. For example, colour coding
may reveal that models with nouns, adjectives, verbs and adverbs as first-
order context words (lex) are very different from those without strong filters
for part-of-speech, because mapping these values to colours reveals distinct
groups in the plot. In contrast, mapping the sentence boundaries restriction
(bound/nobound) might result in a mix of dots of different colours, like a fallen
bag of m&m’s, meaning that the parameter makes little difference. Depend-
ing on whether the user wants to compare models similar or different to each
other, or which parameters they would like to keep fixed, they will use indi-
vidual selection or the buttons to choose models for Level 2. The Select
medoids button5 quickly identifies the predefined medoids. By clicking on the

4By knowing the lemma, it is possible to go directly to the Level 1 page by replacing
lemma in https://qlvl.github.io/NephoVis/level1.html?type=lemma with the corresponding
name of the lemma, e.g. heffen.

5Incorporating this feature is less scalable than the dropdown menus or even the checkbox
buttons; it works with the current pipeline, but is not so straightforward to adapt to new data
that does not follow the exact same pipeline. Flexibilizing the features to allow for missing

https://qlvl.github.io/NephoVis/
https://qlvl.github.io/NephoVis/
https://qlvl.github.io/NephoVis/level1.html?type=lemma
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LEVEL 2 button, Level 2 is opened in a new tab, as shown in Figure 3.3.
In Level 2, the user can already compare the shapes that the models take

in their respective plots, the distribution of categories like sense labels, and the
number of lost tokens. If multiple dimensionality reduction techniques have
been used, the Switch solution button allows the user to select one and
watch the models readjust to the new coordinates in a short animation. In
addition, the Distance matrix button offers a heatmap of the pairwise
distances between the selected models. Section 3.3 will explore the most rele-
vant features that aid the comparison across models, such as brushing sections
of a model to find the same tokens in different models and accessing a table
with frequency information of the context words co-occurring with the selected
tokens. Either by clicking on the name of a model or through the Go to
model dropdown menu, the user can access Level 3 and explore the scatterplot
of an individual model. As Section 3.4 will show, Level 2 and Level 3, both
built around token-level scatterplots, share a large number of functionalities.
The difference lies in the possibility of examining features particular of a model,
such as reading annotated concordance lines highlighting the information cap-
tured by the model or selecting tokens based on the words that co-occur with
it. In practice, the user would switch back and forth between Level 2 and Level
3: between comparing a number of models and digging into particular models.

Figure 3.2: Level 1 for heffen ‘to levy/to lift’.

Before going into the detailed description of each level, a note is in order.
As already mentioned in Section 2.2.3, the dimensions resulting from nmds —

data frames is one of the items on the wish list. Ideally, future versions will implement
algorithms such as pam to compute on the fly as well.

https://qlvl.github.io/NephoVis/level1.html?type=heffen
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Figure 3.3: Level 2 for the medoids of heffen ‘to levy/to lift’.

used in all levels — and t-sne — used in levels 2 and 3 — are not meaningful.
In consequence, there are no axes or axis ticks in the plots. However, the
units are kept constant within each plot: one unit on the 𝑥-axis has the same
length in pixels as one unit on a 𝑦-axis within the same scatterplot; this equality,
however, is not valid across plots. Finally, the code is open-source and available
at https://github.com/qlvl/NephoVis.

3.2 Level 1
The protagonist of Level 1 is an interactive zoomable scatterplot where each
glyph, by default a steel blue wye (“Y”), represents one model. This scatterplot
aims to represent the similarity between models as coded by the nmds output
and allows the user to select the models to inspect according to different crite-
ria. Categorical variables (e.g. whether sentence boundaries are used) can be
mapped to colours and shapes, as shown in Figure 3.4, and numerical variables
(e.g. number of tokens in the model) can be mapped to size.

A selection of buttons on the left panel, as well as the legends for colour
and shape, can be used to filter models with a certain parameter setting. These
options are generated automatically by reading the columns in the data frame
of models and interpreting column names starting with foc_ as representing

https://github.com/qlvl/NephoVis
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Figure 3.4: Level 1 for heffen ‘to levy/to lift’; the plot is colour-coded with
first-order part-of-speech settings; NA stands for the dependency-based models.

first-order parameter settings, and those starting with soc_ as second-order
parameter settings. Different settings of the same parameter interact with an
OR relationship, since they are mutually exclusive, while settings of different
parameters combine in an AND relationship. For example, by clicking on the
grey bound and lex buttons on the bottom left, only BOW models with part-
of-speech filter and sentence boundary limits6 will be selected. By clicking on
both lex and all, all BOW models are selected, regardless of the part-of-speech
filter, but dependency-based models (for which part-of-speech is not relevant)
are excluded. A counter above, circled in Figure 3.5, keeps track of the number
of selected items, since Level 2 only allows up to 9 models for comparison7.
This procedure is meant to aid a selection based on relevant parameters, as
described in Section 2.4. In Figure 3.5, instead, the Select medoids button
was used to quickly capture the medoids obtained from pam. Models can also
be manually selected by clicking on the glyphs that represent them.

6Notice that bound itself, while a BOW parameter value, also includes the dependency-based
models, since they are automatically limited to sentence boundaries.

7The original design, found in http://tokenclouds.github.io/LeTok/, allowed for larger
selections; only 9 models would be actually shown in Level 2, but it would also be possible to
remove some of them and make place to the models left on the waiting list. This makes sense
when models are selected individually and in a particular order, i.e. by clicking on them, but
not so much for selections based on other criteria that we want to explore simultaneously.

https://qlvl.github.io/NephoVis/level1.html?type=heffen
http://tokenclouds.github.io/LeTok/
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Figure 3.5: Level 1 for heffen ‘to levy/to lift’ with medoids highlighted.

3.3 Level 2
Level 2 shows an array of small scatterplots, each of which represents a token-
level model. The glyphs, by default steel blue circles, stand for individual
tokens, i.e. attestations of the chosen lemma in a given sample. The original
code for this level was inspired by Mike Bostock’s brushable scatterplot ma-
trix, but it is not a scatterplot matrix itself, and its current implementation is
somewhat different.

The dropdown menus on the sidebar (Figure 3.3) read the columns in the
data frame of variables, which can include any sort of information for each of
the tokens, such as sense annotation, sources, number of context words in a
model, concordance lines, etc. Categorical variables can be used for colour- and
shape-coding, as shown in Figure 3.8, where the senses of the chosen lemma are
mapped to colours; numerical variables, such as the number of context words
selected by a given lemma, can be mapped to size. Note that the mapping
will be applied equally to all the selected models: the current code does not
allow for variables — other than the coordinates themselves — to adapt to the
specific model in each scatterplot. That is the purview of Level 3.

Before further examining the scatterplots, a small note should be made
about the distance matrix mentioned above. The heatmap corresponding to
the medoids of heffen ‘to levy/to lift’ is shown in Figure 3.6. The nmds rep-
resentation in Level 1 tried to find patterns and keep the relative distances
between the models as faithful to their original positions as possible, but such
a transformation always loses information. Given a restricted selection of mod-
els, however, the actual distances can be examined and compared more easily.
A heatmap maps the range of values to the intensity of the colours, making
patterns of similar/different objects easier to identify. For example, Figure 3.6
shows that the sixth medoid is very different from all the other medoids except
from the seventh, and that the second medoids is quite different from all the
others except the first. Especially when the model selection followed a crite-
rion based on strong parameter settings, e.g. keeping PPMI constant to look at
the interaction between window size and part-of-speech filters, such a heatmap
could reveal patterns that are slightly distorted by the dimensionality reduction
in Level 1 and even hard to pinpoint from visually comparing the scatterplots.

https://qlvl.github.io/NephoVis/level1.html?type=heffen
https://bl.ocks.org/mbostock/3213173
https://bl.ocks.org/mbostock/3213173
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But even with the medoid selection, which aims to find representatives that are
maximally different from each other (or at least that are the core elements of
maximally different groups), the heatmap can show whether some medoids are
drastically more different, or conversely, similar to others. As a reference, the
heatmap is particularly useful to check hypotheses about the visual similarity
of models. For example, unlike with heffen ‘to levy/to lift’ in Figure 3.8, if we
colour-code the medoids of haten ‘to hate’ with the manual annotation (Figure
3.7), all the models look equally messy. As we will see below, we can brush
over sections of the plot to see if, at least, the tokens that are close together in
one medoid are also close together in another (spoiler alert: not the case). The
heatmap of distances confirms that not all models are equally different from
each other, but indeed, each of them are messy in their own particular way.

Figure 3.6: Heatmap of distances between medoids of heffen ‘to levy/to lift’.

Next to the colour-coding, Figure 3.8 also illustrates how hovering over a
token shows the corresponding identifier8 and concordance line. Figure 3.9, on

8The identifier of a token includes four main pieces of information separated by slashes.
The first two, stem and part-of-speech (hef and verb in the example) indicate the target
lemma. The third section points to the filename from which the token was extracted. The
filenames from this corpus have at least three sections split by underscores: the name of the
newspaper (De Volkskrant), the date of publication in yyyy-mm-dd format (2001-06-21) and
the number of the article, among those harvested for the corpus (36). The final part points to
the index of the token in the article including punctuation: in this case, the word form hieven
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Figure 3.7: 2D representation of medoids of haten ‘to hate’, colour-coded with
senses, next to the heatmap of distances between models.

the other hand, showcases the brush-and-link functionality. By brushing over
a specific model, the tokens found in that area are highlighted and the rest are
made more transparent. Such a functionality is missing from Level 1, but is
also available in Level 3. Level 2 enhances the power of this feature by selecting
the same tokens in the rest of the models, whatever area they occupy. Thus,
we can see whether tokens that are close together in one model are still close
together in a different model, which is specially handy in more uniform plots,
like the one for haten ‘to hate’ in Figure 3.7. Figure 3.9 reveals that the tokens
selected in the second medoid are, indeed, quite well grouped in the other five
medoids around it, with different degrees of compactness. It also highlights two
glyphs on the right margin of the bottom right plot. In Level 2, this margin

(third person plural preteritum of heffen, ‘(they) lifted’) around which the concordance line
is built is the 163rd token in its file.
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gathers all the tokens that were selected for modelling but were lost by the
model in question due to lack of context words. In this case medoid 6, with a
combination of bound3lex and PPMIselection, is extremely selective, and for
a few tokens no context words could be captured.

Figure 3.8: Level 2 for the medoids of heffen ‘to levy/to lift’, colour-coded with
categories from manual annotation. Hovering over a token shows its concor-
dance line.

In any given model, we expect tokens to be close together because they share
a context word, and/or because their context words are distributionally similar
to each other: their type-level vectors are near neighbours. Therefore, when
inspecting a model, we might want to know which context word(s) pull certain
tokens together, or why tokens that we expect to be together are far apart
instead. For individual models, this can be best achieved via the ShinyApp
described in Section 3.5, but NephoVis also includes features to explore the
effect of context words, such as frequency tables. In Level 2, while comparing
different models, the frequency table has one row per context word and one
or two columns per selected model, e.g. the medoids. Such a table is shown
in Figure 3.10. The columns in this table are all computed by NephoVis itself
based on lists of context words per token per model. Next to the column
with the name of the context word, the default table shows two columns called
“total” and two per model, headed by the corresponding number and either a
“+” or a “-” sign. The “+” columns indicate how many of the selected tokens
in that model co-occur with the word in the row; the “-” columns indicate
the number of non selected tokens that co-occur with the word. The “total”
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Figure 3.9: Level 2 for the medoids of heffen, colour coded with categories from
manual annotation. Brushing over an area in a plot selects the tokens in that
area and their positions in other models.

columns indicate, respectively, the number of selected or non-selected tokens for
which that context word was captured by at least one model. Here it is crucial
to understand that, when it comes to distributional modelling, a context word
is not simply a word that can be found in the concordance line of the token,
but an item captured by a given model. Therefore, a word can be a context
word in a model, but be excluded by a different model with stricter filters. For
example, the screenshot9 in Figure 3.10 gives us a glimpse of the frequency
table corresponding to the tokens selected already in Figure 3.9. The most
frequent context word for the 31 selected tokens, i.e. the first row of the table,
is the noun glas ‘glass’, which is used in expressions such as een glas heffen op
iemand ‘to toast for someone, lit. to lift a glass on someone’. The columns
for models 1 an 2 show that glas ‘glass’ was captured by those models for all
31 selected tokens. In column 3, however, the positive column reads 29, which
indicates that the model missed the co-occurrence of glas ‘glass’ in two of the
tokens. The names on top of the plots reveal that the first two models have
a window size of 10, while the third restricts it to 5, meaning that in the two
missed tokens glas ‘glass’ occurs 6 to 10 slots away from the target. These are

9The full picture is impractical to include in a printed text; it is recommended to explore
the tool interactively instead.
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most likely the orange tokens a bit far to the right of the main highlighted
area in the third plot. Finally, in the fourth model, which is hidden behind
the table, glas ‘glass’ is missed from one of the 31 tokens but captured in 2
tokens that were excluded from the selection. If we moved the window of the
table we would see that this is a PATHweight model: the missed co-occurrence
must be within the bow window span but too far in the dependency path, wile
the two captured co-occurrences in the “-” column must be within three steps
of the dependency path but beyond the bow window span of 10. This useful
frequency information is available for all the context words that are captured
by at least one model in any of the selected tokens. In addition, the Select
information dropdown menu gives access to a range of transformations based
on these frequencies, such as odds ratio, Fisher Exact and cue validity.

Figure 3.10: Level 2 for the medoids of heffen ‘to levy/to lift’, and frequency
table of the the context words co-occurring with the selected tokens across
models.

The layout of Level 2, showing multiple plots at the same time and linking
the tokens across models, is a fruitful source of information, but it has its limits.
To exploit more model-specific information, we go to Level 3.

3.4 Level 3
Level 3 of the visualization tool shows a zoomable, interactive scatterplot in
which each glyph, by default a steel blue circle, represents a token, i.e. an attes-
tation of the target lexical item. An optional second plot has been added to the
right, in which each glyph, by default a steel blue star, represents a first-order
context word, and the coordinates derive from applying the same dimensional-
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ity reduction technique on the type-level cosine distances between the context
words. The name of the model, coding the parameter settings, is indicated
on the top, followed by information on the dimensionality reduction technique.
Like in the other two levels, it is possible to map colours and shapes to cate-
gorical variables, e.g. sense labels, and sizes to numerical variables, e.g. number
of available context words, and the legends are clickable, allowing the user to
quickly select the items with a given value.

Figure 3.11 shows what Level 3 looks like if we access it by clicking on
the name of the second model in Figure 3.9. Colour-coding and selection are
transferred between the levels, so we can keep working on the same information
if we wish to do so. Conversely, we could change the mappings and selections
on Level 3, based on model-specific information, and then return to Level 2
(and refresh the page) to compare the result across models. For example, if the
frequency table in Figure 3.10 had shown us that glas ‘glass’ was also captured
in tokens outside our selection, or if we had reason to believe that not all of
the selected tokens co-occurred with glas ‘glass’ in this model, we could input
glas/noun on the Features in model field in order to select all the tokens
for which glas ‘glass’ was captured in the model, and only those. Or maybe
we would like to find the tokens in which glasje ‘small glass’ occurs, but we
are not sure how they are lemmatized, so we can input glasje in the Context
words field to find the tokens that include this word form in the concordance
line, regardless of whether its lemma was captured by the model10.

In sum, (groups of) tokens can be selected in different ways, either by
searching words, inputting the id of the token, clicking on the glyphs or brushing
over the plots.11 Given such a selection, clicking on Open frequency table
will call a pop-up table with one row per context word, a column indicating
in how many of the selected tokens it occurs, and more columns with pre-
computed information such as pmi (see Figure 3.12). These values can be
interesting if we would like to strengthen or weaken filters for a smarter selection
of context words.

Like Level 2, Level 3 also offers the concordance line of a token when hover-
ing over it. But unlike Level 2, the concordance can be tailored to the specific
model on focus, as shown in Figure 3.11. The visualization tool itself does not
generate a tailored concordance line for each model, but finds a column on the
data frame that starts with _ctxt and matches the beginning of the name of
the model to identify the relevant format. A similar system is used to find
the appropriate list of context words captured by the model for each token.
For these models, the selected context words are shown in boldface and, for
PPMIweight models such as the one shown in Figure 3.11, their ppmi values
with the target, e.g. heffen, are shown in superscript.

As we have seen along this chapter, the modelling pipeline returns a wealth
of information that requires a complex visualization tool to make sense of it

10Admittedly, the names of the fields can be confusing and should probably be changed.
Both fields work with partial regex matches, but Features in model look in the list of
captured context words, which is a list of lemmas, while Context words performs the search
on the concordance line, i.e. word forms, regardless of whether the model captured them.

11The (beta) feature of the type-level plot on the right side also enables token selection by
clicking on the co-occurring context words (and vice versa) but this is still under development.
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Figure 3.11: Level 3 for the second medoid of heffen ‘to levy/to lift’:
bound10all-ppmiweight-5000all with some selected tokens. Hovering over a
token shows tailored concordance line.

and exploit it efficiently. The Javascript tool described up to now, NephoVis,
was developed and used by the same people within the Nephological Semantics
projects, but is meant to be deployed to a much broader audience that could
benefit from its multiple features. It can still grow, and its open-source code
makes it possible for anyone to adapt it and develop it further. Nevertheless,
for practicality reasons, an extension was developed in a different language: R.
The dashboard described in the next section elaborates on some ideas origi-
nally thought for NephoVis and particularly tailored to explore the relationship
between the t-sne solutions and the hdbscan clusters on individual medoids.

3.5 ShinyApp
The visualization tool discussed in this section was written in R with the shiny
library (Chang et al. 2021), which provides R functions that return html, css
and Javascript for interactive web-based interfaces. The interactive plots have
been rendered with plotly (Sievert et al. 2021). Unlike NephoVis, this tool
requires an R server to run, so it is hosted on shinyapps.io instead of a static
Github Page12. It takes the form of a dashboard, shown in Figure 3.13, with
a few tabs, multiple boxes and dropdown menus to explore different lemmas
and their medoids. All the functionalities are described in the About page of

12This code is also freely available at https://github.com/montesmariana/Level3.

https://github.com/qlvl/NephoVis/
https://github.com/montesmariana/Level3
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Figure 3.12: Level 3 for the second medoid of heffen ‘to levy/to lift’:
bound10all-ppmiweight-5000all. The frequency table gives additional infor-
mation on the context words co-occurring with the selected tokens.

the dashboard, so here only the most relevant features will be described and
illustrated.

The sidebar of the dashboard offers a range of controls. Next to the choice
between viewing the dashboard and reading the documentation, two dropdown
menus offer the available lemmas and their medoids, by number. By selecting
one, the full dashboard adapts to return the appropriate information, including
the name of the model on the orange header on top. The bottom half of the
sidebar gives us control over the definition of relevant context words in terms
of minimum frequency, recall and precision, which will be explained below.

The main tab, t-SNE, contains four collapsable boxes: the blue ones focus
on tokens while the green ones, on first-order context words. The top boxes
(Figure 3.14) show t-sne representations (perplexity 30) of tokens and their
context words respectively, like we would find on Level 3 of NephoVis. However,
the differences with NephoVis are crucial.

First, the colours match pre-computed hdbscan clusters (𝑚𝑖𝑛𝑃𝑡𝑠 = 8) and
cannot be changed; in addition, the transparency of the tokens reflects their
𝜀. The goal of this dashboard is, after all, to combine the 2d visualization
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Figure 3.13: Starting view of the ShinyApp dashboard, extension of Level 3.

and the hdbscan clustering for a better understanding of the models. This
functionality is not currently available in NephoVis because, unlike sense tags,
it is a model-dependent categorical variable13.

Second, the type-level plot does not use stars but the lemmas of the context
words themselves. More importantly, they are matched to the hdbscan clus-
ters based on the measures of frequency, precision and recall. In short, only
context words that can be deemed relevant for the definition or characteriza-
tion of a cluster are clearly visible and assigned the colour of the cluster they
represent best; the rest of the context words are faded in the background. A
radio button on the sidebar offers the option to highlight context words that
are “relevant” for the noise tokens as well.

Third, the tooltips offer different information from NephoVis: the list of
captured context words in the case of tokens, and the relevance measures as
well as the nearest neighbours of the context word in the type-level plot. For
example, in the left side of Figure 3.14 we see the same token-level model shown
in Figure 3.11. Hovering over one of the tokens in the bottom left light blue
cluster, we can see the list of context words that the model caputes for it:
the same we could have seen in bold in the NephoVis rendering by hovering
over the same token. Among them, glas/noun ‘glass’ is highlighted, because
it is the only one that surpasses the relevance thresholds we have set. On
the right side of the figure, i.e. the type-level plot we can see the similarities

13The current code is not suited to adapt the automatic selection of categorical variables
to model-dependent ones, and adding the clustering solution for each of the models would
clutter the list of categorical variables.

https://marianamontes.shinyapps.io/Level3/
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between the context words that surpass these thresholds for any cluster, and
hovering on one of them provides us with additional information. In the case
of glas/noun ‘glass’, the first line reports that it represents 31 tokens in the
light blue hdbscan clusters, with a recall of 0.94, i.e. it co-occurs with 94%
of the tokens in the cluster, and a precision of 1, i.e. it only co-occurs with
tokens in that cluster. Below we see a list of the nearest neighbours, that is,
the context words most similar to it at type-level and their cosine similarity.
The fact that the similarity with its nearest neighbour is 0.77 (in a range from
0 to 1) is worrisome.

Figure 3.14: Top boxes of the t-SNE tab of the ShinyApp dashboard, with
active tooltips.

The two bottom boxes of the tab show, respectively, the concordance lines
with highlighted context words and information on cluster and sense, and a
scatterplot mapping each context word to its precision, recall and frequency in
each cluster. The darker lines inside the plot are a guide towards the threshold:
in this case, relevant context words need to have minimum precision or recall
of 0.5, but if they were modified the lines would move accordingly. The colours
indicate the cluster the context word represents, and the size its frequency in
it, also reported in the tooltip. Unlike in the type-level plot above, here we can
see whether context words co-occur with tokens from different clusters. Figure
3.15 shows the right-side box next to the top token-level box. When one of
its dots is clicked, the context words co-occurring with that context word —
regardless of their cluster — will be highlighted in the token-level plot, and the
table of concordance lines will be filtered to the same selection of tokens.

The first tab of this dashboard is an extremely useful tool to explore the
hdbscan clusters, their (mis)match with the t-sne representation and the role
of the context words. In addition, the HDBSCAN structure tab provides
information on the proportion of noise per medoid and the relationship be-
tween 𝜀 and sense distribution in each cluster. Finally, the Heatmap tab
illustrates the type-level distances between the relevant context words, ordered

https://marianamontes.shinyapps.io/Level3/
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Figure 3.15: Token-level plot and bottom plot of context words in the t-SNE
tab of the ShinyApp dashboard, with one context word selected.

and coloured by cluster, as shown in Figure 3.16. In some cases, it confirms the
patterns found in the type-level plot; in others, like this model, it shows that
most of the context words are extremely different from each other, forming no
clear patterns. This is a typical result in 5000all models like the one shown
here and tends to lead to bad token-level models as well.

3.6 Summary
In this chapter two visualization tools for the exploration of token-level distri-
butional models have been described. Both are open-source, web-based and
interactive. They were developed within the Nephological Semantics projects
at KU Leuven and constitute the backbone of the research described in this
dissertation.

Data visualization can be beautiful and contribute to successful communi-
cation, but its main goal is to provide insight (Card, Mackinlay & Shneiderman
1999). Indeed, these tools have provided a valuable interface to an otherwise
inscrutable mass of data. NephoVis offers an informative path from the organi-
zation of models to the organization of tokens, representing abstract differences
generated by complicated algorithms as intuitive distances between points on
a screen. Selecting different kinds of models and moving back and forth be-
tween different levels of granularity is just a click away and incorporates various
sources of information simultaneously: find all models with window size of 5,
look at them side by side, zoom in on the prettiest one, read a token, read
the token next to it, find out its sense annotation, go back to the selection
of models… Abstract corpus-based similarities between instances of a word,
and between ways of representing these similarities (i.e. the models) become
tangible, colourful clouds on a screen. Most of the points discussed in the sec-

https://marianamontes.shinyapps.io/Level3/
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Figure 3.16: Heatmap of type-level distances between relevant context words
in the ShinyApp dashboard.

ond part of this dissertation would have been simply impossible if it were not
for these tools. Hopefully, they will prove at least half as valuable in future
research projects.

https://marianamontes.shinyapps.io/Level3/
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Chapter 4

Case studies

Every empirical study needs a dataset. The methodological orientation of this
project means that it does not aim for a linguistic description of some phe-
nomenon in itself, but for the development of a tool that could aid such a
description. Therefore, in order to test the workflow described in Chapter 2
and the visualization tools described in Chapter 3, the methodology was applied
to a dataset. For that purpose, 32 Dutch nouns, adjectives and verbs exem-
plifying a range of semasiological phenomena were selected. The phenomena
include: homonymy in the case of nouns, interaction between semantic varia-
tion and argument structure in the case of verbs and, for all parts of speech,
metaphor, metonymy and generalization/specialization. The goal was to ex-
plore which phenomena were revealed by distributional models and whether
they were related to certain parameter settings.

Homonymy occurs when the same lemma has two or more (sets of) senses
that are not semantically or etymologically related. The rest of the relation-
ships between senses can be broadly classified as generalization/specialization,
metaphor, or metonymy. Specialization and generalization are two sides of
the same coin: one of the senses involved is applied to a particular context or
situation, and the other has a much broader application. Crucially, this pro-
cess involves some additional semantic feature. For example, herstructureren
‘to restructure’ can be applied to a range of situations, but when it applies to
companies or parts of companies in particular it does not only mean ‘to change
the structure of something’ but also ‘to reduce the personnel’, which is miss-
ing in the general application. The direction of the relationship, i.e. whether
the first sense is a generalization of the second or the other way around, is
not relevant for the purposes of this study. The relevance is instead linked to
the expectation that specialized senses would be more easily identified than
general ones. Within Cognitive Linguistics, metaphor and metonymy are
understood as cognitive principles that influence semantic structure, rather
than mere expressive tools. They are found to interact and, at the same time,
the distinction between them is not always unambiguous (Lakoff & Johnson
2003, Barcelona 2015, Lemmens 2015, Geeraerts 2003). While metaphor is
described in terms of comparison, similarity and mapping between different
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domains, metonymy is described in terms of reference, contiguity and map-
pings within a domain (Lemmens 2015). For example, when grijs ‘gray’ is
applied to a weather-related term, e.g. grijze avond ‘gray evening’, the colour
of the overcast sky stands for the weather in a metonymical mapping; when
it is applied to an abstract entity like a buurt ‘neighbourhood’ a metaphorical
sense ‘boring, sad’ is activated instead. However, the definition of what counts
as a domain is not without problems, leaving the boundaries between metaphor
and metonymy challenging to define as well (Croft 2003). For the purposes of
these case studies, the distinction is relevant to the extent that metonymical
senses are more likely than metaphorical senses to occur in the same contexts
as their literal counterparts.

In practice, the situation is even more complicated. In the case of struc-
tural metaphors (Lakoff & Johnson 2003), metaphorical extensions might be
elaborated by means of longer expressions. For example, in we richten de spots
op de zoektocht naar kandidaten ‘we aim the spotlights towards the search for
candidates’, richten ‘to direct’ and op ‘on’ can co-occur with either the lit-
eral or metaphorical senses of spots ‘spotlight’, and zoektocht ‘search’ is the
cue that makes the literal sense less appropriate. This leads us to a situation
already discussed by Geeraerts (2003) regarding the interaction of metaphor
and metonymy in idiomatic and composite expressions. In a case like hete aar-
dappel ‘hot potato’, which in the sample always refers to delicate situations
that nobody wants to deal with, is the adjective ‘hot’ literal or metaphorical?
Following Geeraerts’ prismatic model of composite expressions, it could be ex-
plained as a combination of literal heet ‘hot to the touch’ with literal aardappel
‘potato’ that together is metaphorically understood as a delicate situation; a
reinterpretation could then complete the mapping between the potato and the
situation, and between the property of being hot to the touch and that of being
delicate and to be avoided. The degree to which these reinterpreted mappings
match systematic metaphorical or metonymical mappings of the individual el-
ements is a separate issue: it could be argued for heet, which has a ‘conflictive’
meaning in non idiomatic constructions, but not for aardappel ‘potato’. As a
rule, these cases have been annotated as literal, understanding that it is the
situation as a whole that is metaphorical.

It should be noted that these criteria are argumentative and justify the se-
lection of the lemmas, but cannot go further than that. It is unfortunate, but
the intriguing question about mapping parameter settings to these phenomena
has a negative answer. As the second part of the dissertation will show, other
factors play a role in the formation of the clouds, relegating these traditional
semantic categories to a secondary place, if not as extras on the show. Never-
theless, the phenomena are accounted for, the questions have been asked and,
no matter how unsatisfactorily, they have been answered.

Hence, this chapter focuses on the selection, collection and annotation of
the dataset on which the methodology was tested. First, Section 4.1 will in-
troduce the 32 selected lemmas and their senses, making explicit which of the
aforementioned phenomena they exhibit. I will not discuss each lemma in de-
tail; instead, I will expand of those used for illustration in Part II as it becomes
relevant. Section 4.2 will focus on how the concordance lines were collected and
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the manual annotation procedure. Relevant information regarding the annota-
tion itself will also be provided. Finally, Section 4.3 rounds up the description
and the technical part of this dissertation.

4.1 The lemmas
The selection of lemmas aimed to cover a wide range of phenomena: metaphor,
metonymy, generalization/specialization, and more. The nouns were chosen be-
cause they exhibit both homonymy and polysemy: they have unrelated (groups
of) meanings and at least one of them presents finer distinctions. The selec-
tion of adjectives also includes different kinds of semantic extension which are
mostly related to the kind of noun that is modified by it. Finally, the verbs
combine syntactic and semantic dimensions. The definitions provided to the
annotators with their respective examples and their translations to English will
be listed in tables, but no other examples will be shown in this chapter. In-
stead, relevant tokens and their contexts will be reproduced in the second part
of the dissertation to illustrate the results from the analyses. Empty cells in the
Dutch columns of the definitions indicate sense tags that were not present in
the original selection of senses but instead were included after the annotation
procedure — and assigned in a second stage — based on the results of the an-
notation itself. The Dutch definitions themselves are adaptations made by Dirk
Geeraerts and me based on consultation of dictionaries (e.g. van Sterkenburg
1991, den Boon, Geeraerts & Arts 2007) and pilot surveys of small concordances
from the corpus.

The selection of phenomena was attached to certain expectations. We ex-
pected specific senses to be easier to identify than general senses, i.e. to have a
more identifiable context. With regard to nouns, homonyms were expected to
be discriminated more easily that their internal distinctions. For verbs, instead,
the expectation was to find more confusion between senses that either shared
the semantic or the syntactic dimension than between senses that did not. We
also expected metonymical senses to be harder to disambiguate than synaes-
thetic or metaphorical senses, since they are more likely to have an overlapping
context with the more concrete, literal senses.

4.1.1 The nouns
A set of 7 nouns was selected that exhibit both homonymy and polysemy in
at least one of the homonyms1, as shown in Table 4.1. The purpose of this
selection was to examine how models dealt with granularity, i.e. hierarchies of
senses: homonyms should be easier to disambiguate than their senses, since
they will apply to very different contexts, but maybe it would be possible to

1Originally we selected 8 nouns, but the very interesting spoor was discarded because of
the high disagreement between the annotators and their (and my) difficulty understanding
the definitions. It has three homonyms, ‘trace’, ‘railway’ and ‘spurs’, and some senses of
‘trace’ can be confused with some of ‘railway’. In any case, the data is available for future
analyses.
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tune the parameter settings for different levels of granularity, like adjusting the
focus on a camera.

Table 4.1: Definitions and examples for the senses of each of the 7 analysed nouns.
In each sense, the first number indicates the homonym and, if there is a second
number, the sense within the homonym.

Dutch sense English

blik
oogopslag (een blik werpen op iets,
een blik van verstandhouding)

1.1 gaze (throw a look at something, a
look of understanding)

gezichtsvermogen (een scherpe blik) 1.2 sight (a sharp sight)

inzicht, in intellectuele zin (een brede
blik)

1.3 perspective, in intellectual sense (a
wide view)

dun geplet metaal, i.h. bijz. vertind
dun plaatstaal (dozen uit blik)

2.1 thin flattened metal, in particular
thin tin-plated steel (boxes of tin)

voorwerp (i.h.bijz. doos voor voedsel)
vervaardigd uit zulk materiaal
(stoffer en blik, een blik erwtjes, een
maaltijd uit blik)

2.2 object (in particular food container)
made of tin (brush and dustpan, a
can of peas, canned meal)

voedsel bewaard in een voorwerp als
bedoeld in 2.2 (eet je niet teveel
blik?)

2.3 food contained in an object as
described by 2.2 (don’t you eat too
much canned food?)

hoop
ongeordende stapel (een hoop
rommel, gooi maar op de hoop)

1.1 unordered mass (a pile of junk, just
drop it on the pile)

grote hoeveelheid (een hoop mensen,
een hele hoop geld)

1.2 great quantity (a bunch of people, a
lot of money)

positieve verwachting, vertrouwen op
iets positiefs (hoop koesteren, de
hoop uitspreken dat...)

2 positive expectation, trust in
something positive (to nurture hope,
express the hope that...)

horde
bende, ordeloze groep personen (een
woeste horde)

1 band, unordered group of people (a
ferocious horde)

1.2 unordered group of non-people (a
horde of computers)

materiële hindernis, m.n. houten
raamwerk gebruikt bij het hordelopen
(de 400m horden bij de vrouwen)

2.1 material obstacle, namely wooden
frames used for hurdling (the 400m
hurdles for women)

hindernis in figuurlijke zin (een horde
nemen)

2.2 obstacle in figurative sense (to take a
hurdle)

schaal
een geordende reeks cijfers,
afstanden, hoeveelheden e.d.
waarmee iets gemeten wordt (de
schaal van Celsius, Richter, op een
schaal van 1 tot 5)

1.1 an ordered list of numbers, distances,
quantities and such, with which
something is measured (the scale of
Celsius, Richter, on a scale from 1
to 5)

de verhouding tussen de grootte van
iets en de weergave ervan in een
kaart, model, grafiek etc. (een schaal
van 1:20, een schaal van 10 km)

1.2 the ratio between the size of
something and its representation in a
map, model, graph etc. (a scale of
1:20, a scale of 10km)

grootteorde, omvang (de schaal van
een probleem, op grote/kleine schaal)

1.3 magnitude, size (the scale of a
problem, on a large/small scale)
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Table 4.1: (continued)

Dutch sense English

harde buitenbekleding van zekere
organische zaken (de schaal van een
ei, de schalen van een mossel)

2.1 hard exterior of certain organic things
(the shell of an egg, the shell of a
mussel)

ondiepe en wijde schotel (een schaal
met vruchten)

2.2 shallow and wide dish (a platter with
fruits)

elk van de beide schotels die aan de
armen van een balans hangen
(gewicht in de schaal leggen)

2.3 each of the dishes hanging from the
arms of a scale (lay a weight on the
(dish of a) scale)

spot
0 (idiosyncratic usage in sports

headlines) (Spot op 1ste)
oneerbiedige, ridiculiserende
uitspraak of behandeling (de spot
drijven met, bijtende spot)

1 disrespectful, mocking expression or
behaviour (mock someone, sarcasm)

reclameboodschap via radio, televisie,
bioscoop (een spotje voor tandpasta)

2.1 advertisement via radio, television,
cinema (a spot for toothpaste)

schijnwerper (de spots richten op) 2.2 spotlight (direct the spotlights on)

2.3 metaphorical spotlight (he likes to be
in the spotlight)

staal
zeer hard ijzer met laag
koolstofgehalte (twaalf ton staal,
ijzer en staal, een man van staal)

1.1 very hard iron with low carbon
content (twelve tons of steel, iron
and steel, man of steel)

1.3 steel industry (steel is striking)

voorwerp of deel van een voorwerp uit
zulk metaal (het staal van de velgen
is verroest)

1.2 object or part of an object made of
such metal (the steel in the rims is
rusted)

monster van een stof of materiaal, bij
wijze van proef (een staal vragen,
goederen op staal verkopen)

2.1 sample of a substance or material, as
evidence or proof (to ask for a
sample, to buy a sample of goods)

proef, voorbeeld, bewijs (een staaltje
van hun kunnen, een staaltje van
bewaamheid)

2.2 proof, example, evidence (a sample of
their abilities, a proof of
competence)

2.3 sample taken from a population for
statistical analysis (a representative
sample)

stof
materie, substantie van een bepaald
type (giftige stoffen, vaste stof,
grijze stof )

1.1 matter, substance of a certain kind
(poisonous substances, solid
substances, gray matter)

weefsel (wollen en katoenen stoffen) 1.2 fabrics (woolen and cotton fabrics)

onderwerp waarover men spreekt,
schrijft, nadenkt etc. (stof voor een
roman, stof tot onenigheid)

1.3 topic about which people talk, write,
think, etc. (material for a novel,
topic of disagreement)

massa zeer kleine droge deeltjes van
verschillende oorsprong, door de lucht
meegevoerd (een wolk stof, stof
afnemen)

2.1 mass of very small dry particles of
various origin, floating in the air (a
cloud of dust, to clean dust (=to
dust))

massa zeer kleine deeltjes als toestand
van een specifieke substantie (iets tot
stof vermalen, tot stof verpulveren)

2.2 mass of very small particles as state
of a specific substance (to bring
something to dust)

2.3 idiomatic uses of ’dust’ (lift up dust)
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Three nouns have one frequent, monosemous homonym and a less frequent,
polysemous one: hoop ‘hope/heap’, spot ‘ridicule/show or spotlight’ and horde
‘horde/hurdle’. The polysemy phenomena are varied. First, horde ‘hurdle’ can
refer to literal hurdles, e.g. in races, while the other sense is metaphorical:
abstract difficulties are talked about as obstacles to be surpassed. In addition,
after the annotation a new sense tag derived from ‘horde’ was included, for the
cases in which the members of the horde were not human beings, but insects,
cars or other entities. Second, one of the hoop ‘heap’ senses refers to literal
heaps of things that can form a pile, while the other one is a generalization
to large quantities, e.g. een hoop werk ‘a lot of work’. Finally, the polysemous
homonym of spot has two main senses linked by metonymy, namely ‘short
video’, e.g. and advertisement spot, or ‘spotlight’. The ‘spotlight’ sense can
also be used either literally or metaphorically (‘to be in the spotlight’); this
distinction was not included in the original definitions, but the annotators
pointed it out and it was added afterwards.2

The other four nouns have two polysemous homonyms: schaal ‘scale/dish’,
blik ‘gaze/tin’, stof ‘substance/dust…’, and staal ‘steel/sample’. First, the fre-
quent homonym of blik (‘gaze’) has a concrete sense with two metaphoric ex-
tensions: ‘intellectual look’, which was not attested in the sample, and ‘per-
spective’, which is quite infrequent. The infrequent homonym, ‘tin’, can either
refer to the material itself, to an object made of that material (‘tin can’) or
its content (‘canned food’); due to their low frequency and the difficulty on
part of the annotators to distinguish between the senses, the two last senses
were later combined into one. Second, the frequent homonym of stof has two
concrete, referentially distinct senses (‘substance’ and ‘fabric’) and an abstract
one (‘topic, material’). In contrast, for the less frequent homonym we dis-
tinguished two senses presenting a subtle, context-specific difference: between
‘dust (in the air)’ and the ‘dust’ in ‘reducing something to dust, to pulverize’.
The last sense was so infrequent that it was excluded, but another distinction
emerged from the annotation, namely between literal ‘dust’ and ‘dust’ in id-
iomatic expressions, such as stof doen opwaaien ‘to be controversial, lit. to stir
up dust’. The new sense was added because, even though within the idiomatic
expression the meaning of stof is still ‘dust’, the annotators kept confusing it
with the ‘topic, material’ sense, which actually refers to expressions such as stof
voor een roman ‘material for a novel’. Third, schaal exhibits subtle perspective
shifts in one homonym (‘scale’) and refers to different concrete objects with the
second ‘shell/dish’, of which the very distinctive ‘shell’ sense was removed due
to its low frequency. Finally, staal ‘steel’ could refer, like blik ‘tin’, to either
the material or the part of an object that is made from it — the latter is very
infrequent among our sample, but instead another sense could be identified,
namely ‘steel industry’. The ‘sample’ homonym, on the other hand, originally
presented a metaphorical distinction between material samples and ‘evidence’
of abstract characteristics, but was modified after annotation to a specializa-

2Next to these more traditional tags, one category (sense 0 in Table 4.1) represents a
selection of confusing lines with the format Spots op {1ste, 2de, 3de}. There are 13 such
tokens in the sample, all from the start of Regional Sports articles from Het Nieuwsblad,
published between 2003-09-10 and 2004-10-27. This category is not like any other sense, but
it was included after the annotation just to see what the models did with it.
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tion distinction between general samples, e.g. a urine sample, and (statistically)
representative samples.

As we can see, the nouns present a variety of semantic phenomena at a finer
granularity than homonymy: metaphor in the case of blik ‘gaze’, horde ‘hurdle’
and spot ‘spotlight’, metonymy in the case of horde ‘horde’, blik ‘tin’, staal
‘steel’ and spot ‘videoclip/spotlight’, generalization/specialization in the case
of staal ‘sample’, schaal ‘dish’ and hoop ‘heap’, perspective shifts for schaal
‘scale’ and other relationships in the frequent stof homonym.

4.1.2 The adjectives
The selection of adjectives includes 13 lemmas presenting different kinds of
polysemy phenomena (Table 4.2). The purpose of this selection was to examine
how models dealt with their semantic relationships and whether they could
extract them from the different nouns modified by the target adjective.

Three adjectives have a metonymic reading: hoopvol ‘hopeful’, geestig
‘witty’ and hachelijk ‘dangerous/critical’. For geestig and hoopvol, one of the
senses is anthropocentric, i.e. it’s mainly or exclusively applied to people:
witty people against the witty things they say or do, and people who express
hope against things that inspire it. In hachelijk’s case, the difference is a
matter of temporal or telic perspective: between things that might go wrong
and situations that are already problematic.

Table 4.2: Definitions and examples for the senses of each of the 13 analysed adjec-
tives.

Dutch sense English

dof
(van kleuren en zichtbare dingen)
mat, zonder glans, vaal (een doffe
blik)

1 (of colours and visible things) matte,
without shine, pale (a dull gaze)

(van geluiden) niet luid of scherp,
onderdrukt, gesmoord (een doffe
kreet)

2 (of sounds) not loud or sharp,
suppressed, smothered (a dull cry)

(van personen, gevoelens e.d.) niet
opgewekt, lusteloos, zonder energie
(doffe onverschilligheid, doffe
ellende)

3 (of people, feelings, etc.) not cheerful,
apathetic, without energy (dull
apathy, dull misery)

(van denkbeelden e.d.) niet scherp
voor de geest staand (een doffe
herinnering)

4 (of ideas and such) not sharp in the
mind (a dull memory)

geestig
scherpzinnig en humoristisch van aard
(een geestige collega)

1 of witty and humoristic nature (a
witty colleague)

blijk gevend van, uitdrukking gevend
aan, gekenmerkt door
scherpzinnigheid en humor (een
geestig boek, een geestige blik, een
geestige opmerking)

2 giving an impression of, expressing,
characterized by wittiness and humor
(a witty book, a witty look, a witty
remark)

3 being perceived as witty (I find this
funny)
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Table 4.2: (continued)

Dutch sense English

gekleurd
met kleur, in letterlijke zin (in het
bijzonder, niet zwart, wit of grijs)
(gekleurde wangen)

1 with colour, in a literal sense (in
particular, not black, white or gray)
(colored cheeks)

(van personen e.a.) niet blank (de
gekleurde medemens, van gekleurde
afkomst zijn)

2 (of people a.o.) not white (the fellow
colored man, to be of colored origin)

(van uitspraken, opvattingen e.d.)
niet neutraal, tendentieus (een
gekleurde voorstelling van zaken)

3 (of expressions, concepts) not neutral,
tendentious (a colored representation
of things)

geldig
van kracht, van toepassing, van
waarde zijnde volgens wettelijke of
andere regels (een geldig
vervoerbewijs, betaalmiddel,
juridisch bewijs)

1 valid, acceptable, with value
according to legal or other rules (a
valid driving license, currency, legal
evidence)

van kracht, van toepassing, van
waarde in ruimere zin (een geldige
redenering)

2 valid, acceptable, with value in
general sense (a valid reasoning)

gemeen
gemeenschappelijk in gebruik of
bezit, gedeeld (gemene kosten, een
gemene muur)

1 common property or of common use,
shared (common costs, a common
wall)

openbaar, publiek (de gemene zaak) 2 public (the public business)

alledaags, gewoon, tot de middelmaat
behorend (het gemene volk, de
gemene man)

3 commonplace, normal, mediocre (the
common people, the common man)

boosaardig, kwaadaardig, laaghartig,
malicieus (een gemene streek)

4 malicious, evil, mean (a mean trick)

ordinair, plat, onkies, vulgair
(gemene praatjes)

5 ordinary, flat, indecent, vulgar (mean
conversations)

6 cool, awesome, badass

goedkoop
laag in prijs, betaalbaar, voordelig
(goedkope wijn)

1 of low price, affordable, advantageous
(cheap wine)

geen hoge prijzen vragend (een
goedkoop winkeltje, een goedkope
loodgieter)

2 not asking a high price (a cheap
shop, a cheap plumber)

waar de prijzen laag zijn (een
goedkope buurt)

3 where the prices are low (a cheap
neighborhood)

van weinig waarde, makkelijk
verkregen, oppervlakkig, banaal
(goedkope lof, goedkoop succes,
goedkope argumenten)

4 with little value, received easily,
superficial, banal (cheap praise,
cheap success, cheap arguments)

grijs
met een kleur die ligt tussen wit en
zwart; vaalwit, grauw (grijs van het
stof, de grijze dolfijn)

1 with a color between white and black,
pale white (gray from the dust, the
gray dolphin)

(van periodes e.d.) zonder veel
zonneschijn, bewolkt, betrokken (een
grijze dag)

2 (of periods and such) without much
sunlight, cloudy, covered (a gray day)
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Table 4.2: (continued)

Dutch sense English

(van haar) zijn kleur verloren
hebbend, m.n. door gevorderde
leeftijd (een grijs baardje)

3 (of hair) having lost its color, namely
because of old age (a gray beard)

(van personen e.a.) grijsharig, en
vandaar, betrekking hebbend op
ouderen (de grijze golf )

4 (of people and related) gray haired,
and thus, related to old people (the
gray wave)

saai, kleurloos, vervelend (een grijze
buurt)

5 boring, not colorful, tedious (a gray
neighborhood)

niet helemaal volgens de wet of de
regels, halflegaal (de grijze economie)

6 not exactly following the law or rules,
half legal (the gray economy)

hachelijk
met kans op een ongunstige afloop,
(potentieel) gevaarlijk (een hachelijke
onderneming)

1 with chances of unfavorable outcome,
(potentially) dangerous (a dangerous
enterprise)

(reëel) gevaarlijk, netelig, kritiek,
benard (een hachelijke situatie)

2 (actually) dangerous, trick, critical,
dire (a dangerous situation)

heet
(van dingen) zeer warm (een gloeiend
hete kachel)

1 (of things) very warm (a very hot
stove)

(van het lichaam) warm aanvoelend,
een hogere temperatuur dan normaal
hebbend (hete wangen, het heet
hebben)

2 (of the body) feeling warm, having a
higher temperature than normal (hot
cheeks, to feel hot)

(van het weer) zeer warm (hete
dagen, hete zomer)

3 (of the weather) very warm (hot
days, hot summer)

(van voedsel) pikant (hete sauzen) 4 (of food) spicy (hot sauce)

(van personen) sexueel
hartstochtelijk, geil (een hete bok)

5 (of people) sexually attractive, horny
(a hot buck)

(van gebeurtenissen, periodes e.d.)
gekenmerkt door heftige strijd (het
ging er heet aan toe, een hete herfst)

6 (of events, periods, etc.)
characterized by fierce conflict (it was
getting hot, a hot autumn)

7 popular, interesting or new, recent

heilzaam
(letterlijk) bijdragend tot gezondheid
en lichamelijk welzijn (een heilzaam
dieet)

1 (lit.) that brings health and physical
wellbeing (a healthy diet)

(figuurlijk) nuttig, een gunstig effect
hebbend (een heilzaam besluit)

2 (fig.) necessary, having a beneficial
effect (a beneficial decision)

hemels
betrekking hebbend op de hemel (de
hemelse Vader, de hemelse
boodschap)

1 related to heaven (de heavenly
Father, the heavenly message)

verrukkelijk, heerlijk, zalig, goddelijk
(een hemelse verschijning, een
hemelse stem)

2 delightful, lovely, blissful, divine (a
heavenly appearance, a heavenly
voice)

hoekig
(van voorwerpen, figuren e.d.) met
hoeken of scherpe kanten (een
hoekige tekening, een hoekig gezicht)

1 (of objects, figures, etc.) with angles
or sharp edges (an angulous drawing,
an angulous face)

(van bewegingen, ritmes e.d.) niet
vloeiend (een hoekig melodietje)

2 (of movements, rhythms, etc.) not
fluent (a broken melody)
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Table 4.2: (continued)

Dutch sense English

(van personen) houterig, stijf,
onhandig in de omgang (een hoekig
karakter)

3 (of people) rigid, stiff, clumsy (a
clumsy character)

hoopvol
(van personen, uitingen, gedragingen
etc.) blijk gevend van hoop, vol hoop,
optimistisch (een hoopvolle
stemming, dat stemt mij hoopvol)

1 (of people, expressions, behaviors,
etc.) giving an impression of hope,
full of hope, optimistic (a hopeful
mood, that brings me hope (makes
me hopeful))

reden tot hoop gevend, beloftevol
(hoopvolle perspectieven)

2 giving reason for hope, promising
(hopeful perspectives)

Four adjectives have metaphoric readings: hoekig ‘angular’, dof ‘dull’,
heilzaam ‘healthy/beneficial’ and gekleurd ‘colourful/person of colour/tainted’.
Heilzaam has two senses, distinguishing between things that are literally
healing, or beneficial for the health, and things that are metaphorically
healing, or beneficial in general. Hoekig and gekleurd present three sense
distinctions, one of which is particularly concrete and the most frequent,
‘of angular form’ and ‘colourful’ respectively, and another one explicitly
anthropocentric: ‘clumsy’ and ‘non white’. The third sense distinction has a
different quality: synaesthetic for hoekig, applied to rhythms, and metaphoric
for gekleurd, meaning ‘tainted, corrupted’. Finally, dof has a concrete sense
applied to the visual domain, a synaesthetic extension applied to sounds, and
an abstract meaning applied to feelings and emotions; the fourth meaning
listed in the table was not attested.

Three adjectives present some other form of similarity between the readings:
geldig ‘valid’, hemels ‘heavenly’ and gemeen ‘shared/mean…’. Geldig ‘valid’ and
hemels ‘heavenly’ offer two options: one restricted to a specific context (laws
and reglaments for geldig and Heaven for hemels) and one much broader. The
case of gemeen is quite complex, involving a number of rather subtle distinctions
that often co-exist in the same attestation: i.e. ‘common’ and ‘shared’, or
‘average’ and ‘ordinary’.

Finally, the remaining three adjectives present a more complex picture: heet
‘hot’ and goedkoop ‘cheap’ have literal senses with different kinds of entities but
has also metaphorical extensions, while grijs ‘grey’ has both metaphorical and
metonymical extensions. Heet ‘hot’ presents, first, three very concrete senses
that differ in perspective: temperatures of objects, of weather and as it is felt
in the body; the other three senses are metaphorical, i.e. the objects to which
heet is applied cannot be physically hot. Crucially, there is no exclusive sense
tag for idiomatic expressions in which the combination of heet ‘hot’ and its con-
crete object (e.g. hang_ijzer ‘iron’, aardappel ‘potato’) is used metaphorically.
Goedkoop, on the other hand, presents a modest set of 4 sense distinctions: a
concrete, prototypical and frequent sense (i.e. cheap products), two perspecti-
val shifts (i.e. cheap shops and cheap area) and a clear metaphor (i.e. of little
values). Finally, grijs presents a very frequent, concrete sense, three specific
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metonymic extensions — to weather and to hair, and from there to old peo-
ple or generations — and two metaphorical ones — ‘boring’ and ‘half legal’.
In practice, the ‘boring’ reading can include ‘sad, not cheerful’, and the ‘half
legal’ sense is more general, applying to ‘gray areas’ between two poles.

In sum, the adjectives include more simple semasiological structures with
only one kind of semantic extension involved as well as more complex interac-
tions between the phenomena.

4.1.3 The verbs
The criterion to select the 12 verbs analysed here was to cover a range of
combinations of syntactic and semantic variation, with the goal of exploring
how different parameter settings dealt with their interaction or whether certain
types of models would focus on one or the other aspect.3 Their senses and
translations are shown in Table 4.3.

Four verbs are always transitive and their senses can be distinguished by the
objects they can take: people or objects for haten ‘to hate’, people or opinions
for huldigen ‘to honour/to believe’, concrete objects or taxes for heffen ‘to
levy/to lift’, and statements or decisions for herroepen ‘to recant/to void’.

Two of the verbs can be transitive, with a distinction based on the direct
object, or intransitive: helpen ‘to help’ and herstructureren ‘to restructure’. In
both cases the intransitive sense is semantically similar to one of the transitive
senses. For example, the intransitive sense and one of the transitive senses
of herstructureren only apply to companies, with the connotation that the
personnel is being reduced, while the other transitive sense has a much more
general application.

Three verbs can be transitive, with a distinction based on the direct object,
or reflexive: diskwalificeren ‘to disqualify’, herhalen ‘to repeat’ and herinneren
‘to remember/to remind’. In the case of diskwalificeren ‘to disqualify’ and,
to a lesser degree, herhalen ‘to repeat’, this opposition can be interpreted as
a specific situation where the object and the subject coincide. In contrast,
herinneren means ‘to remember’ in the reflexive construction and ‘to remind’ in
the transitive construction with the preposition aan; the transitive construction
without the preposition can also be attested (e.g. ik word herinnered als, ‘I am
remembered as’) but very infrequently.

Table 4.3: Definitions and examples for the senses of each of the 12 analysed verbs.

Dutch sense English

diskwalificeren
(trans.) ongeschikt verklaren en
uitsluiten van een bepaalde functie of
positie (een getuige diskwalificeren)

1 (trans.) declare unsuitable and
exclude from a certain function or
position (disqualify a witness)

3The original set of verbs also included herkennen, but it was excluded because of the
extreme subtlety of its sense distinctions, which made the annotation particularly challenging.
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Table 4.3: (continued)

Dutch sense English

(trans.) wegens onregelmatigheden
uitsluiten bij een wedstrijd (FC De
Trappers werd gediskwalificeerd
wegens wangedrag)

2 (trans.) exclude from a competition
because of irregularities (FC De
Trappers was disqualified because of
misbehaviour)

(reflex.) zichzelf buiten spel zetten,
zich onmogelijk maken (met zulk
gedrag diskwalificeer je jezelf )

3 (reflex.) exclude oneself, make oneself
impossible (with such a behaviour
you disqualify yourself )

haken
(trans.) met of als met een haak
vastmaken (aan, in, achter iets) (een
wagen aan een locomotief haken, een
sleutel in een ring haken)

1 (trans.) fix something with or as if
with a hook (at, to, behind
something) (hook a wagon to a
locomotive, a key in a key ring)

(intrans.) met of als met een haak
vastraken (de doornen haakten aan
haar jas, haar paraplu bleef haken
aan de deurknop)

2 (intrans.) get stuck with or as if with
a hook (the thorns got stuck in her
coat, her umbrella got stuck in the
doorknob)

(trans.) over een uitgestoken been
doen struikelen (hij werd gehaakt in
de elfmeter, iemand pootje haken)

3 (trans.) make trip over a stuck out
leg (he was made to trip in the
penalty kick, make someone trip)

(intrans., met ’blijven’) van
gedachten, blikken e.d.: haperen,
telkens terugkeren (aan of bij iets) (ik
bleef haken bij de herinnering aan
mijn broer)

4 (intrans., with ’to keep’) of thoughts,
gazes and such: falter, come back (to
something) (I kept going back to the
memory of my brother)

(intrans./trans.) zeker handwerk
maken door met een staafje met een
weerhaak lussen samen te weven
(haken tijdens het televisiekijken,
hoe ontspannend!, een babymutsje
haken)

5 (intrans./trans.) make handcraft by
weaving loops together with a hooked
needle (crochetting while watching
tv, so relaxing!, crochet a baby hat)

6 (with ’towards’) desire, aim for

harden
(trans.) hard maken, in letterlijke zin
(staal harden)

1 (trans.) make hard, in literal sense
(harden steel)

(intrans.) hard worden, in letterlijke
zin (snel hardende verven)

2 (intr.) become hard, in literal sense
(quickly hardening paint)

(trans.) hard maken in figuurlijke zin;
weerstand en veerkracht bijbrengen
(een kind harden tegen het klimaat)

3 (trans.) make hard in figurative
sense; impart resistance and resilience
(toughen a child against the weather)

(reflex.) bij zichzelf weerstand en
veerkracht aankweken (zich harden
tegen het lot)

4 (reflex.) develop resistance and
resilience by oneself (toughen oneself
against fate)

(trans.) uithouden, verdragen (niet te
harden)

5 (trans.) endure, tolerate (unbearable
(’not to bear’))

haten
(trans.) iem. haat toedragen, een
sterk gevoel van afkeer en
vijandschap t.o.v. iem. hebben
(waarom haat hij mij zo?)

1 (trans.) feel hatred, have a strong
feeling of aversion and enmity
towards someone (why does he hate
me so much?)

(trans.) iets onaangenaam, verfoeilijk,
verwerpelijk vinden (hoe zou iemand
de taalkunde kunnen haten?)

2 (trans.) consider something
unpleasant, detestable, reprehensible
(how could someone hate
linguistics?)
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Table 4.3: (continued)

Dutch sense English

heffen
(trans.) m.b.t. materiële zaken: in de
hoogte brengen, optillen (met
geheven hoofd; hij heft met gemak
80 kilo in de hoogte)

1 (trans.) w.r.t. material objects: move
to a higher position, lift (lifting their
head; he easily lifted 80 kg)

(trans.) m.b.t. geld e.d.: invorderen,
eisen, opleggen (belasting, rente,
accijns heffen)

2 (trans.) w.r.t. money and such:
collect, demand, impose (collect tax,
interest, excise)

helpen
(trans.) ondersteunen in materiële of
morele zin, bijstaan (met raad en
daad helpen, een helpende hand, uit
de nood helpen)

1 (trans.) support in material or moral
sense, assist (help in word and deed,
a helping hand, help out)

(trans.) iem. assisteren door met hem
samen te werken (helpen met het
huiswerk; heb je dat alleen gedaan of
heeft iemand je geholpen?)

2 (trans.) assist someone by
collaborating with them (help with
homework, did you do that by
yourself or did someone help you?)

(intrans.) voordeel opleveren, nuttig
zijn (dat drankje heeft goed geholpen)

3 (intrans.) yield advantage, be useful
(that drink helped a lot)

4 (trans.) with inanimate entities, be
helpful, useful

5 (with ’to/for’) to provide

herhalen
(trans.) m.b.t. handelingen of
activiteiten: opnieuw uitvoeren (een
experiment, een les, een bezoek
herhalen)

1 (trans.) w.r.t. acts or activities:
perform again (repeat an experiment,
a lesson, a visit)

(trans.) m.b.t. zinnen, boodschappen
e.d.: opnieuw uitspreken (kunt u dat
even herhalen?)

2 (trans.) w.r.t. utterances, messages
and such: pronounce again (Could
you please repeat that?)

(reflex.) zich opnieuw voordoen (de
geschiedenis herhaalt zich)

3 (reflex.) occur again (history repeats
itself )

4 (trans.) of a show or an episode,
broadcast again

herinneren
(met ’aan’) weer te binnen brengen,
in het geheugen terugroepen (iemand
aan iets herinneren)

1 (with ’of’) bring back to the mind, to
the memory (remind someone of
something)

(reflex.) in het geheugen aanwezig
hebben, niet vergeten (zich een
gebeurtenis, een persoon herinneren)

2 (reflex.) have present in the memory,
not forget (remember an event, a
person)

(trans.) met een plechtigheid,
monument o.i.d. gedenken (we
herinneren vandaag de Slag bij
Ronceval)

3 (trans.) remember with a celebration,
monument and such (today we
remember the Battle of Roncevaux
Pass)

herroepen
(trans.) m.b.t. wetten, besluiten e.d.:
intrekken, niet langer geldig verklaren
(een besluit, volmacht, decreet
herroepen)

1 (trans.) w.r.t. laws, decisions and
such: withdraw, declare not valid
anymore (annul a decision, power of
attorney, decree)
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Table 4.3: (continued)

Dutch sense English

(trans.) m.b.t. uitspraken, meningen
e.d.: terugnemen en rechtzetten
(Trump moest weer een van zijn
dwaze tweets herroepen)

2 (trans.) w.r.t. statements, opinions
and such: retract and correct (Trump
had to retract one of his crazy tweets
again)

herstellen
(trans.) repareren, de eraan ontstane
schade wegwerken (het dak
herstellen)

1 (trans.) repair, get rid of the damage
in something (repair the roof )

(trans.) tot de vorige toestand
terugbrengen, doen terugkeren (de
goede verstandhouding herstellen)

2 (trans.) bring back, make return to
the previous state (repair the
understanding)

(trans.) goedmaken, weer doen
vergeten (een fout herstellen)

3 (trans.) make good, make forget (fix
a mistake)

(reflex.) tot de oorspronkelijke
toestand terugkeren (de rust herstelt
zich)

4 (reflex.) return to the original state
(peace is restored)

(intrans.) genezen (van een ziekte
herstellen)

5 (intrans.) heal (heal from a disease)

6 (intrans.) of a financial/economic
entity, recover

herstructureren
(trans.) reorganiseren, een nieuwe
structuur geven (je kunt deze tekst
maar beter herstructureren)

1 (trans.) reorganize, give a new
structure (you should restructure this
text)

(trans.) m.b.t. bedrijven in
problemen: activiteiten of personeel
afstoten, downsizen (Bayer
herstructureert zijn plasticdivisie)

2 (trans.) w.r.t. businesses in
difficulties: remove activities or
personeel, downsize (Bayer
restructures its plastic division)

(intrans.) van bedrijven in
problemen: activiteiten of personeel
afstoten, downsizen (de chemie moet
zich herstructureren)

3 (intrans.) of businesses in difficulties:
remove activities or personeel,
downsize (chemistry must
restructure (itself))

huldigen
(trans.) iets of iem. eer bewijzen,
vieren (we huldigen de uitvinder van
de herbruikbare broodzak)

1 (trans.) celebrate, pay homage to
someone or something (we honor the
inventor of the reusable bread bag)

(trans.) erkennen, aankleven,
toegedaan zijn (een opvatting,
mening, theorie huldigen)

2 (trans.) acknowledge, follow, be
commited to (hold a view, an
opinion, a theory)

Two more verbs can be transitive, intransitive or reflexive, with semantic
distinctions within the transitive structure: harden ‘to make or become hard/
to tolerate’ and herstellen ‘to repair/ to heal…’. The senses of harden can
be split in two main groups. One is more closely related to the property of
‘hardness’, i.e. to turn something or someone hard or to become hard, in literal
or figurative sense, with different constructions: from the intransitive literal
sense in om hun kaas te laten harden ‘in order to make their cheese harden’ to
the transtive figurative one in Verdriet heeft haar gehard ‘Grief has hardened
her’. The second group, however, includes one transitive construction in a very
specific pattern but is more frequent in the sample than all the others combined:
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(niet) te harden (‘to (not) tolerate’, always negative).
Finally, haken ‘to hook’ presents semantic distinctions within both the tran-

sitive and the intransitive structures. It can refer literally or metaphorically to
hooking something or remaining hooked, but there are also two very specific
senses: one characteristic of the football context, meaning ‘to make someone
trip (by placing a foot in front of them)’, and ‘to crochet’.

In sum, the set of verbs includes cases where only the kind of direct object
plays a role in the disambiguation and cases where it interacts with syntactic
patterns. Moreover, the specific ways in which these kinds of direct objects
are defined differ across verbs: from animacy or agency in the case of haten to
concreteness in the case of heffen. The semantic distinctions can also rely on
a broader context: diskwalificeren will typically have people as direct object,
but the sports-related context defines a specific sense, characterised by distinct
motivations and consequences.

4.2 The dataset
For each of the 32 lemmas listed above, about 300 tokens were collected from the
QLVLNewsCorpus (described in Section 2.3.1). All attestations were manually
annotated by at least three different people based on the definitions found in
the Dutch column of Tables 4.1, 4.2 and 4.3. Next to the sense assignment,
which was later revised for uniformity — and to include senses emerging from
the annotation itself, as mentioned above — the annotation included confidence
assignment and selection of disambiguating context words.

The selection of the lemmas involved some introspection as well as consul-
tation of lexical resources and corpus data: thinking of potential candidates,
checking the senses reported in dictionaries (van Sterkenburg 1991, den Boon,
Geeraerts & Arts 2007) and estimating their relative frequencies in small con-
cordances. We tried to avoid extremely skewed distributions approximating a
monosemous structure or numerous infrequent senses that would be unlikely to
stand out in a model.4 In the end, as we will see, sense frequency is not really
an issue, because clouds don’t model senses anyways.

The exploration of these samples of concordances also served for the cal-
culation of the number of tokens to model and annotate. Regardless of the
actual frequency of the items in the corpus, the minimum sample contained
240 tokens; it was raised to 280 if any of the senses had a relative frequency
below 20% in the sample, to 320 if it was below 10%, and to 360 if there were
many senses and therefore some had a low frequency (e.g. heet). The lower
and upper bound were estimated from pilot studies of clouds as a large enough
amount to warrant the use of this methodology and small enough to make
sense of in the visualization tool. Table 4.4 shows the absolute frequency (in

4In a number of cases, the corpus survey (reading a random concordance of 40-50 lines)
invalidated options that intuitively or according to the dictionary definitions would have
conformed to our requirements. When judging such a discrepancy, it is important to take
into account the composition of the corpus. The topics addressed in newspapers and the terms
used to talk about them are certainly not representative of everyday life or the entirety of
language.
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the 520mw QLVLNewsCorpus) of each selected lemma, the size of the sam-
ple and the distribution of the senses: the more the boxplot in the rightmost
column goes to the right, the more frequent one of the senses. For example,
the long boxplots for blik and hoop indicate a very skewed distribution, i.e. a
sense with very high frequency and senses with very low frequencies, while the
narrow, centred boxplots for hachelijk and hemels indicate that their senses
are equally frequent. The sample extraction was almost completely random,
with the only restriction that no two instances of the same lemma would be
extracted from the same file. There were, however, a few duplicates, due to
repetition of the same fragment on different dates.

Table 4.4: Absolute frequency of the lemmas in the corpus, number
of batches and distribution of their senses. The number next to the
boxplots indicate the number of different senses.

lemma frequency sample senses

nouns
spot 3496 240 5
horde 3224 280 4
blik 22175 280 4
staal 5796 320 5
schaal 14249 320 5
stof 24502 320 5
hoop 41946 320 3

adjectives
hachelijk 1307 240 2
hemels 1417 240 2
heilzaam 1476 240 2
hoopvol 3680 240 2
geldig 5128 240 2
hoekig 1242 280 3
geestig 3970 280 3
gekleurd 4520 280 3
dof 1268 320 4
gemeen 2997 320 7
grijs 13567 320 7
goedkoop 40669 320 4
heet 10676 360 7

verbs
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Table 4.4: (continued)

lemma frequency sample senses

herroepen 848 240 2
herstructureren 936 240 3
diskwalificeren 1084 240 3
huldigen 4091 240 2
heffen 4799 240 2
haten 4828 240 3
herstellen 28814 240 6
herinneren 33432 240 3
helpen 87136 240 6
harden 1050 320 5
herhalen 16856 320 4
haken 1403 360 6

For each of the tokens a concordance line was extracted with 15 words to
either side. Bachelor students of Linguistics at KU Leuven were recruited and
hired to manually annotate the samples of the selected lemmas. Each of them
was tasked with annotating 40 tokens of each of 12 types (at least three nouns,
four adjectives and four verbs, plus one of either of the categories)5: a total
of 480 tokens6, to annotate in 6 weeks. In total, each of the 9600 tokens was
annotated by at least three annotators; 10% of them were annotated by four.
Each lemma was split in 6-9 batches of 40 tokens, each of them annotated by
a different group of annotators. The annotators were offered an introductory
meeting, a video tutorial and written guidelines, but the procedure itself was
performed individually.

Both the lemmas and the batches were assigned randomly, while keeping in
mind the part-of-speech distribution. It was the intention to shuffle the samples
of each lemma before splitting them into batches, but something went wrong
with the code and they were ordered by source; each batch would have mostly
tokens of a different newspaper. The annotation involved three tasks:

1. Assign a sense from a predefined set of definitions, namely the Dutch
column in Tables 4.1 through 4.3. If none of the tags apply, select “None
of the above” and explain why;

2. Express the confidence of the decision in a scale of 6 values;
3. Identify the words of the context that helped in the disambiguation.

Since entering textual information in a spreadsheet can easily lead to ty-
pos and inconsistencies and, furthermore, annotating the helpful context words

5Recall that originally there were 8 nouns and 12 verbs.
6A few of them doubled their load and annotated two sets of 480 tokens.



76— Chapter 4. Case studies

is particularly challenging in such a tool, a user-friendly visual interface was
designed that received input from buttons and returned the output in json
format. The interface, which is not available in its original form any more, had
a menu with the list of lemmas and two tabs: an overview of the concordance
lines of the selected type and an annotation workspace (Figure 4.1). The anno-
tation workspace focused on one concordance line7 (or token) at a time, offering
first the text, then a series of long radio buttons with the definitions and exam-
ples, a star rating option for the confidence evaluation, followed by a clickable
reproduction of the text, and a text input field for comments. The long radio
buttons meant that the annotators had the full definitions and examples at
their disposal every time they had to assign a sense for a given lemma, while
the final output transformed their decisions into more manageable codes, such
as sense_1, sense_2, etc. The clickable concordance lines let them select the
context words they deemed most useful to the annotation procedure by simply
clicking on them; the program then translated this as an array of positions
relative to the target, e.g. ["R1", "L2"] if the first word to the right and the
second to the left are selected.8 Finally, the text input field at the bottom was
available to leave any sort of comment and was compulsory when “None of the
above” was selected.

The dataset obtained from this procedure is very rich and interesting for
a variety of purposes. For each token we have sense assignment, confidence
evaluation and selection of informative cues by at least three different inde-
pendent annotators, as well as comments on at least the cases which did not
receive a sense. Agreement between the annotators can be measured with
coefficients such as Fleiss’ 𝜅 (Fleiss 1971), illustrated in Figure 4.2, but the
resulting picture may be unnecessarily complex. First, disagreement is suscep-
tible to granularity: annotators might disagree between senses of a noun but
not between the homonyms, except for their confusion between idiomatic senses
of stof ‘dust’ and its ‘topic, material’ sense. Second, annotators were not very
sensitive to grammatical distinctions (e.g. between transitive and intransitive
senses), which was a strong reason for disagreement in herstructureren, helpen,
haken and herstellen. Third, disagreements were sometimes concentrated on
one annotator, who showed a strong preference for a certain sense; as such, they
were not an indicator of the ambiguity of the token but of misunderstandings
on the part of the annotator. Some annotators exhibited an almost excessive
attention to nuances, while others were much less thorough.

More importantly, for the great majority of the tokens (83.8%) the majority
of the annotators agreed on one tag that remained as the official sense for that

7The web-based interface interpreted html, of course. As a consequence, the sentence
separator <sentence></sentence> was simply ignored; it should have been replaced with
<p></p> to properly render the division, especially after headlines, which lack final stops.
Interestingly, this rendering also could have read strings such as &quot; as ", but at some
earlier stage of pre-processing of the corpus all the & have been transformed into and, resulting
in a number of confusing appearances of andquot; in the concordance lines.

8For a few weeks into the annotation, the code had a bug that meant that if a word form
was repeated in the concordance line and one of its instances was selected its first occurrence
was recorded even if the chosen one was a later co-occurrence. The bug was fixed as soon as
it was reported and the rest of the annotators were warned, but not all the resulting errors
were corrected.
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Figure 4.1: Screenshot of the options in the annotation tool.

token. After gathering and exploring the data, the tokens were reread by me
and a final decision was made for their sense tags. Figure 4.3 shows the number
of tokens with full agreement, a majority agreement (i.e. only one annotator
disagreed) or no agreement and whether the same chosen sense was kept in the
final annotation, another tag was applied or the token was removed (e.g. tokens
of heet that corresponded to the verb heten). The Other category includes
new senses suggested by the annotators themselves as well as corrections from
misunderstandings, such as the second original sense of blik, which annotators
interpreted in different ways and was actually not attested in the dataset.
The very few cases of Same with no agreement were tokens annotated by four
annotators where two of them selected the senses that remained, while the
other two disagreed.

In addition, the final sense distribution is not significantly different from
that in the much smaller pilot samples. Distribution across batches, instead,
was affected by regional variation. For example, Belgian sources include more
sports-related articles than the Netherlandic sources, leading to variation in the
sense distribution of lemmas with such a sense (diskwalificeren ‘to disqualify’,
haken ‘to make someone trip’ and horde ‘hurdle’) across regions. This discrep-
ancy in distribution across batches could have been avoided if the tokens had
been properly shuffled.

Around 4% of all the assigned tags where “None of the above”, with a clearly
uneven distribution. The lemmas with the largest amount of were haken, with
117 tokens in which three annotators chose “None of the above” and 72 in which
two of them did. Heet and harden follow with 69 and 90 tokens with 3 such
tags and 14 and 10 with two. Many of these were due to wrong lemmatization:
the concordance of haken had many instances of afhaken ‘to stop’ or met haken
en ogen, an idiomatic expression in which it is a noun; the concordances of
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Figure 4.2: Agreement between annotators per batch per lemma, computed
with irr::kappam.fleiss() (Gamer et al. 2019).

heet and harden included instances of the verb heten ‘to call, to be named’
and the adjective hard respectively. In a similar way, many of the tokens in
the concordance of heffen were instances of opheffen ‘to lift/to cancel’, but the
annotators did not always catch these cases. The verbs afhaken and opheffen
are separable verbs in Dutch: in some constructions, the prefix is separated
from the root, so that a syntactic parser might confuse them with a different
verb and a preposition. Next to these issues, annotators assigned “None of the
above” in cases where the tokens did not match any of the suggested senses,
especially in cases of idiomatic expressions such as hete aardappel ‘hot potato’.
All these annotations where classified in four categories: wrong_lemma, for the
cases of wrongly selected concordance lines, was assigned to 413; not_listed,
assigned 421 times, indicated that the lemma was correct but none of the
suggestions applied; unclear (240 times) was used when the token could not
be parsed by the annotator, and between (45 cases) referred to doubt between
two or more of the given options. These different classes informed later decisions
such as whether to add or remove senses or tokens.

Tokens were removed for different reasons. Next to the cases where the
concordance line did not belong to begin with (including adverbial uses of the
adjectives), there were some indecipherable tokens, extremely infrequent senses
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Figure 4.3: Number of tokens per lemma with full, partial (majority) or no
agreement, split by whether the majority sense was kept or changed. Removed
tokens are not included.

(e.g. 4, 5 tokens out of 250) and duplicated tokens. In total, 424 tokens were
removed, 109 of which belonged to haken.

Confidence values were explored but not used, because they tend to be
similar across batches, lemmas and senses, with a tendency towards the highest
values and variation across annotators instead: what is low confidence for some
of them is high confidence for others. Figure 4.4 breaks this down in terms of
the degree of agreement and whether the assigned tag matched one of the senses
offered or not. Note that the top facet, “None of the above”, has much lower
counts than the lower facet. We would expect confidence ratings to be lower for
annotations that do not agree with the other votes for the same token and, in
relative terms, that is the case. Confidence assignment to a “None of the above”
tag is ambiguous: some annotators tend to give them the minimum confidence
because they are not confident about the meaning of the concordance line,
while others assign a high value because they are confident that none of the
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Figure 4.4: Distribution of confidence values across annotations, by whether
the annotators agreed with another in the same token and by whether they
selected a sense or “None of the above”.

The selection of cues was consulted when defining parameter settings (Sec-
tion 2.3): if two annotators agreed on both the sense tag and a context word for
a given token, that context word was considered an official cue for that sense.
From the relative position representing the cue in the output of the annotation
tool, other information available in the corpus could be extracted and counted,
such as the lemma of the context word, its dependency relation (or distance)
to the target and its bow distance to the target. For example, Tables 4.5 and
4.6 list the most frequent dependency paths, lemmas and window sizes across
the official cues of heilzaam ‘healthy/beneficial’ for each of its senses. As we
will see again in Section 6.2.1, this lemma is characterised by frequent nouns
modified by the target, namely werking ‘effect’, effect and invloed ‘influence’,
which are ambiguous in terms of the senses of heilzaam: in a sentence such as
de heilzame werking van look ‘the healing power of garlic’, garlic is a better cue
in the ‘health/beneficial’ distinction than werking ‘effect, power’. Nonetheless,
annotators did select these context words as cues for both senses, not realising
that they were not distinctive of one or the other sense. The pattern fulfilled
by garlic in this example was indeed captured by some cues, as shown in the
third line of Table 4.5, but it is much less frequent.
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Table 4.5: Four most frequent dependency paths among the cues of heilzaam,
with counts per sense. NA indicates that the cue is not in the sentence of the
target. In the path, CW stands for the cue and T stands for the target: the head
is at the left of → and its dependents are to the right, preceded by the name
of the dependency relation.
path examples beneficialhealthy
CW → mod:T heilzame werking

’healing power’
60 41

NA Different sentence 13 32
werking →
[mod:T,mod:van →
obj1:CW]

de heilzame werking
van look ’the healing
power of garlic’

8 14

ben →
[predc:T,mod:voor →
obj1:CW]

look is heilzaam voor
de gezondheid ’garlic is
beneficial for the health’

7 1

Table 4.6: Six most frequent lemmas and window spans among the cues of
heilzaam, with counts per sense.

CW healthy beneficial BOW healthy beneficial
werking/noun 20 12 1 74 48
effect/noun 5 9 4 38 28
gezondheid/noun 5 0 3 27 23
lichamelijk/adj 4 0 2 18 22
medisch/adj 4 0 5 21 20
economie/noun 0 4 6 21 14

4.3 Summary
In this chapter we looked at the dataset used to test and explore the workflow
and the visualization tools. The selection of lemmas was described along with
the semantic phenomena they would allow us to test. Afterwards, the anno-
tation procedure was delineated, from the extraction of concordances to the
assignment of senses, confidence values and cues.

As was mentioned before, for each of the lemmas, 200-212 models were gen-
erated following the workflow described in Chapter 2. The cues selected by the
annotators informed some of the decisions involved in the parameter settings.
The sense annotation was applied to assess how well the models performed at
disambiguation: initially, we did not try to match senses to clustering solutions,
but looked for a spatial configuration that might hide more subtle relationships.
As a few examples in Chapter 3 have shown, this is much more straightforward
in some lemmas than in others.
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The range of semantic phenomena was meant to provide different possible
aspects of meaning that distributional models might be able to capture. From a
lexicological point of view, “similarity of distribution correlates with similarity
of meaning” is not enough. What is similarity of meaning?9 Does this mean
that more granular distinctions, such as senses within homonyms, will be more
difficult to capture than coarser distinctions, i.e. the homonyms themselves?
Are metonymy, metaphor and specialization modelled by the same parameter
settings? Can they be discriminated, can we fine-tune models to capture one
or the other? And what is the role of constructions: does argument structure
interfere in the modelling of senses? These were the questions that the case
studies presented here tried to address, and the following part of this disserta-
tion will present the answers.

9Sahlgren restricts the notion of meaning, as it can be found in distributional models, to
“the meanings that are in the text” (2008: 49) and distinguishes between models that capture
paradigmatic and syntagmatic relationships (without any further distinctions). Even if we
could be satisfied with such an answer, it only applies to type-level models.
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Chapter 5

A cloud atlas

Clouds come in many shapes. Like the cotton-like masses of droplets we see in
our skies, the clouds of word occurrences generated by token-level distributional
models may take different forms, depending on their density, their size and
their distinctiveness. “Meaning is use”, “Differences in usage correlate with
differences in meaning”, “You shall know a word by the company it keeps”1

and other such catchy slogans sound intuitively accurate, but they hide a wealth
of complexity and variation. Like meaning, context is far from orderly, and a
myriad of words with different characteristics interact to generate the variation
we see in these clouds.

In this chapter, we will try to make sense of the nephological topology,
i.e. the variety of shapes that these clouds may take. For this purpose, we will
classify hdbscan clusters mapped to t-sne representations in a way that can
help us understand what we see when we see a cloud. The starting point is the
shape that a researcher sees in the t-sne plot, which will be visually likened to
types of meteorological clouds and further described in technical terms.

In Section 5.1 we will discuss the rationale behind this particular classifi-
cation and the tools used to operationalize these decisions. A more detailed
description of each cloud type and their technical interpretations follows in
Section 5.2, while Section 5.3 zooms back out to compare the characteristics of
the different types. Finally, we summarize the chapter in Section 5.4.

5.1 Rationale of the classification
When we look at the t-sne plot of a token-level model, we might see different
kinds of shapes. For example, Figure 5.1 shows the t-sne solution for the same
parameter configuration in six different lemmas. Some of them have clear,
neat islands that stand out against a large mass, while others look smooth and
uniform. Even this uniformity might take rounder or more angular shapes,
with bursts of density when three or four tokens get together. As we have
mentioned before, a t-sne solution that looks very uniform typically means

1Attributed to Ludwig Wittgenstein, Zellig Harris and J. R. Firth respectively, as discussed
previously.

85
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that the perplexity is too high, whereas too many small islands suggest that
it is too low. However, the models never seem to look better in the other
perplexity values we have explored2.

heet stof dof

huldigen haten hoop

Figure 5.1: Uncoloured t-sne representations of the same parameter settings
(bound5lex-ppmiselection-focall) across six different lemmas.

Mapping an hdbscan clustering solution with 𝑚𝑖𝑛𝑃𝑡𝑠 = 8, like we do in
Figure 5.2 for the same models shown in Figure 5.1, has proved to be a decent
system for identifying the structure we see in these clouds. Clusters tend to
match the tighter islands we see, and to highlight dense areas that might be too
subtle for our eyes. In some cases, the clustering solution and the visualization
do not agree, e.g. clusters are spread around or overlap. This can be taken as a
sign of uncertainty, as an indication that the group of tokens involved is much
harder to describe and model that others in which both algorithms do agree.

At the stage of the distance matrix, we can establish, for each of our tokens,
its similarity to any other token in the model. These similarities are indepen-
dent from each other: until we do not transform them, they do not even need
to respect the triangle inequality3. In contrast, both clustering and visualiza-
tion add a layer of processing meant to find patterns of similar tokens that
are different from the other tokens. The relationships between different pairs
of tokens are not independent any more: nearest neighbours are the nearest
because other tokens are farther away. Sometimes these patterns are easy to
find, which leads to very nice, interpretable clouds, like the top plots in Figure

2This can be checked in Level 2 of the visualization: https://qlvl.github.io/NephoVis/.
3The triangle inequality refers to a property of metric spaces, according to which the

distance between point A and point B cannot be larger than the sum of the distances between
A and C and between B and C.

https://qlvl.github.io/NephoVis/
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5.2; sometimes they are very hard to find, resulting in lots of noise and/or less
defined clouds, like in the last two plots.

heet stof dof

huldigen haten hoop

Figure 5.2: T-sne representations of the same parameter settings (bound5lex-
ppmiselection-focall) across six different lemmas, coloured coded with hdb-
scan clustering. Some of the heet clusters are gray because there are more
clusters than colours we can clearly distinguish.

In this chapter we will look at a classification of the possible shapes, what
we know about their genesis and how we can interpret them. The term cloud
will refer to an hdbscan cluster or its noise: each of the coloured patches in
the plots of Figure 5.2. The model itself, like a picture of the sky, might present
multiple clouds of different types.

As we will see in Chapter 6 as well, the factors that interact to produce a
group of similar tokens include the frequency of the context words, whether they
co-occur within the sample and their type-level similarity. Clusters dominated
by one context word may look similar to clusters dominated by a group of
similar context words, and yet have different semantic interpretations. Along
the way, we should keep in mind that the patterns observed here are tendencies,
rather than rules: they are are a first map around an unknown land that still
calls for more adventurous explorers.

The clouds have been classified into five main categories and an additional,
orthogonal feature. The classification is based on a combination of t-sne visu-
alization (perplexity 30) and hdbscan (𝑚𝑖𝑛𝑃𝑡𝑠 = 8) and it would probably
be different if other visualization techniques or clustering algorithms are used.

The main categories, which will be described in more detailed in Section
5.2, are, in descending degree of clarity:
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• Cumulus: the most defined clusters, revealing strong patterns that t-sne
and hdbscan agree on;

• Stratocumulus: a slightly looser definition of still decent clouds;
• Cirrus: the weakest, smallest, less defined clouds, resulting from weaker

patterns that might not be immediately evident without colour coding;
• Cumulonimbus: massive clouds;
• Cirrostratus: the hdbscan noise.

The inspiration for the names of the types of clouds is visual: the shapes
that we would find when mapping the hdbscan clusters to the t-sne solution
resemble the shapes of different types of meteorological clouds. Admittedly, for
those who are familiar with meteorological types of clouds, this is not necessar-
ily the most salient feature. Altitude, temperature and composition, instead,
are more relevant in categorizing metereological clouds. As we will see in Sec-
tion 5.3, it could be possible to map the 𝜀 (epsilon) values to the altitudes of
the clouds, but that might already take the metaphor too far.

Technical criteria were defined in order to automatically categorize a large
number of clusters. They are the result of both theoretical reasoning and trial
and error, so that the final classification matches the intuitions derived from
visual inspection. In other words: this classification should help us understand
what we are looking at based on the shapes we identify, but technical, objec-
tive criteria were designed that approximate these intuitions for a larger scale
analysis. These criteria make use of (i) the noise category from hdbscan, (ii)
the relative size of the cluster, (iii) separability indices, (iv) cosine distances
between the tokens and (v) 𝜀 values.

Criteria (i) and (ii) are straightforward. Criterion (iii) refers to two mea-
sures developed within the semvar package (Speelman & Heylen 2014, 2017),
kNN and SIL: they assess how well the items are clustered based on a distance
matrix. In this case, we are looking for the match between the hdbscan clus-
ters, which take the role of classes, and the euclidean distances within the t-sne
plot. Let’s see how they work.

The first measure, kNN, is a separability index developed by Speelman &
Heylen (2014) based on the proportion of “same class items” among the 𝑘
nearest neighbours of an item. It answers the following question: looking at
the hdbscan clusters mapped to the t-sne plot: how pure are the clusters?
Do they form tight groups of the same colour, or do they overlap (maybe with
noise tokens)? Recall that this has no bearing on the semantic composition
of the cluster: instead, it refers to the visual homogeneity of the cluster as
mapped to the plot.

For our purposes, it makes sense to set 𝑘 to 8, the minimum number of
tokens that a cluster should have based on the current hdbscan parameters.
As a result, for each token 𝑥 of a cluster 𝐶, if the 8 tokens closest to 𝑥 in the
t-sne plot belong to the same hdbscan cluster 𝐶, then kNN = 1, and if none of
them do, then kNN = 0, regardless of what other class(es) the other items belong
to. When the proportions are mixed, the ranking of the neighbours plays a role:
if the tokens closest to 𝑥 belong to 𝐶, kNN will be higher; if instead they belong
to another class, kNN will be lower. The kNN value of the cloud itself (𝐶) is the
mean of the kNN assigned to each of its members. A high kNN means that there
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are only a few instances of a different class mixed in among the tokens of the
cloud: in other words, the cloud is quite compact and pure. The problem with
kNN is that it is biased in favour of large clouds. The larger the cloud is, the
higher the proportion of tokens that is entirely surrounded by items of the same
cluster. However, clusters with the same kNN and different sizes have different
shapes. In order to counteract this bias, we include a SIL threshold. SIL, or
silhouette, is a popular measure of cluster quality that takes into account the
distances between the members of a cluster and to the members outside that
cluster (Rousseeuw 1987). When the tokens inside a cloud are much closer
to each other than to tokens outside the cloud, SIL is highest, with an upper
bound of 1. If the cloud is very spread out and/or other clouds are very close
by, e.g. because they overlap, SIL will go down. Thus, a combination of high
kNN and high SIL results in more compact, homogeneous, isolated clouds.

Criteria (iv) and (v) are the distances between the tokens belonging to the
same cluster and the 𝜀 values respectively. The former refer to the original
cosine distances between the tokens of the same cluster: the lower they are,
the more similar the tokens are to each other. These may be different from
the euclidean distances based on the t-sne plot. Finally, 𝜀 values are extracted
from the hdbscan clustering and were explained in Chapter 2.2.4. The lower
the 𝜀, the denser the area of the token, i.e. the smaller the area covered by its
nearest neighbours. Noise tokens have typically the highest 𝜀 values: they are
very disperse, and therefore the radius required to find 8 near neighbours is
larger. The members of a cluster might have a variety of 𝜀 values: the lower
the 𝜀, the closer it is to the core, i.e. the denser area of the cluster. To be clear,
I am not making any claims about the technical or semantic interpretation of 𝜀
right now. A brief discussion on this is given in Chapter 6. Instead, the utility
of these values lies in their straightforward mapping to the visual effects of the
plot. If the 𝜀 values of a clustered token are close to those of noise tokens,
the cluster is, in a way, submerged in noise: hdbscan is finding patterns that
t-sne does not. On the contrary, if the 𝜀 values are much lower than for noise
tokens, the cloud stands out.

The five criteria are combined in the following algorithm to classify the
different clusters.

1. The noise is categorised as a Cirrostratus cloud.
2. The clusters that cover at least 50% of the modelled tokens (including

noise) are Cumulonimbus clouds.
3. The clearest, roundest, densest clusters are Cumulus clouds. They must

at least have a kNN ≥ 0.75, SIL ≥ 0.5 and mean cosine distance ≤ 0.5.
In addition, less than 10% of the tokens in the cluster may have a higher
𝜀 than the lowest noise 𝜀, or the noise in the model must cover less than
10% of the tokens.

4. The smallest clusters, i.e covering less than 10% of the modelled tokens,
if 75% of the model is noise or kNN < 0.7, are Cirrus clouds.

5. The most decent of the remaining clusters are Stratocumulus clouds.
They must have kNN ≥ 0.7, SIL ≥ 0.5 or mean distance ≤ 0.2. In addition,
either more than half of the tokens have lower 𝜀 than the noise tokens or
no more than 10% of the modelled tokens are noise.
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Table 5.1: Number of clouds of each type per medoid or model in general; in
parenthesis, the number of Hail clouds is specified.

Cloud type Clouds in Medoids All clouds
Cumulus 267 (25) 6899 (459)
Stratocumulus 412 (34) 8777 (692)
Cirrus 342 (2) 9477 (32)
Cumulonimbus 42 (15) 1025 (221)
Cirrostratus 254 (1) 6453 (3)

6. The remaining clusters are Cirrus clouds.

In addition, the category of Hail groups the clouds with at least 8 identical
tokens; these can belong to any of the other classes.

Table 5.1 shows the number of clouds, either in medoid models or across all
models, belonging to each of the categories. By definition, almost all models
have a Cirrostratus cloud, i.e. noise tokens, and no more than one Cumulonim-
bus cloud, i.e. massive cloud. The rest of the clouds may occur more than
once in the same model. The number of clouds that also belongs to the Hail
category is given in parentheses.

5.2 Types of clouds
In this section, the different cloud shapes will be described in some detail. Their
general look on a plot will be compared to pictures of meteorological clouds
and I will offer a technical interpretation for them.

Before going into the descriptions, an explanation of one of the measures
that takes part in the technical interpretation is in order: the 𝐹 -score. Clouds
can be represented by the set of context words co-occurring with the tokens that
compose it. The relationship between each context word 𝑐𝑤 and the cluster
may be described in terms of precision and recall, already mentioned in Section
3.5: precision indicates the proportion of tokens co-occurring with 𝑐𝑤 that
also belong to the cluster, while recall indicates the proportion of tokens within
the cluster that co-occur with 𝑐𝑤. For example, if all the tokens in a cluster
co-occur with the definite determiner de, de has a recall of 1 for that cluster;
but in all likelihood, these tokens only constitute around 40% of the tokens
co-occurring with de across the sample, resulting in a precision of 0.4. Both
values can be summarized in an 𝐹 -score, which is defined as the (weighted)
harmonic mean of precision and recall. In this case, the unweighted 𝐹 , that
is, where precision and recall are deemed equally important, equals 0.57. The
higher the 𝐹 , the better the representativeness of the context word in relation
to the cluster: an 𝐹 of 1 indicates that all the tokens co-occurring with that
word belong to that cluster, and all the tokens in that cluster co-occur with
that word, while an 𝐹 of 0 indicates the absolute lack of overlap between the
domain of the context word and the clouds. When a context word has a high



Types of clouds — 91

𝐹 in relation to a cluster, that cluster is dominated by the context word. This
is a handy term that will come up frequently as I describe types of clouds, and
especially in Chapter 6. In general, only context words that co-occur with at
least two tokens within a cluster are considered, to avoid inflating the value of
hapax legomena.

5.2.1 Cumulus clouds
In meteorological terms, Cumulus clouds look puffy: they are our prototypical
and ideal images of clouds. As token-level clouds, they also correspond to
our ideal images of clusters: mostly roundish, visually salient because of their
density and isolation. We would be able to find them even without colour-
coding: both t-sne and hdbscan agree that those tokens belong together. In
Figure 5.3, the four rightmost clusters, in green, light blue, yellow and blue,
are Cumulus; the rest are Stratocumulus clouds.

Figure 5.3: Example of Cumulus cloud: inspiration on the left, plot ex-
ample on the right (nobound10lex-ppmiweight-focall of dof ). Picture by
Glg, edited by User:drini - photo taken by Glg, CC BY-SA 2.0 de, https:
//commons.wikimedia.org/w/index.php?curid=3443830.

Cumulus clouds are defined by a number of different measures with strict
values, after excluding Cirrostratus (noise) and Cumulonimbus (massive
clouds). First, the clusters need to have both kNN ≥ 0.75 and SIL ≥ 0.5, as
well as a mean pairwise cosine distance between the tokens of 0.5 or lower.
The combination of these three strict thresholds ensures quite pure, compact,
isolated clusters: they don’t visually overlap with other clusters or noise. The
final requirement makes sure that the cloud stands out against the noise. One
of the ways it can achieve this is by having an 𝜀 lower than the minimum
noise 𝜀 in at least 90% of the tokens: at least 9 out of 10 tokens stand out.
However, in models without any noise or with very little, noise 𝜀 values might
be particularly high, so this threshold is not applied in models with less than
10% noise.

Most of these clouds are characterized by one context word with high pre-
cision and recall for the cluster. In fact, 75% of these clouds have a context

https://commons.wikimedia.org/w/index.php?curid=3443830
https://commons.wikimedia.org/w/index.php?curid=3443830
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word with an 𝐹 of 0.72 or higher, while in 75% of the rest of the clouds the
highest 𝐹 is lower than that. These top context words also tend to have high
pmi, but some may even have negative pmi.

The lemmas with the highest proportion of Cumulus clouds are heffen ‘to
levy/to lift’, hachelijk ‘dangerous/critical’, schaal ‘scale/dish’, gemeen ‘com-
mon/mean…’ and stof ‘substance/dust…’. They are all cases with strong col-
locational patterns of the kind discussed in Section 6.2. Lemmas that repel
Cumulus clouds, on the other hand, such as haten ‘to hate’, geestig ‘witty’,
gekleurd ‘coloured’ and hoekig ‘angular’, lack such collocational patterns and
instead form more uniform, fuzzy pictures.

5.2.2 Stratocumulus clouds
In meteorological terms, Stratus clouds are flat or smooth clouds: Stratocu-
mulus clouds are then a flatter, less compact version of the Cumulus clouds
discussed above. In Figure 5.4, all three clouds are Stratocumulus: from the
large, disperse light blue cloud, to the more stretched orange one and the more
compact green cloud that lost three points in the bottom right.

Figure 5.4: Example of Stratocumulus cloud: inspiration on the left, plot ex-
ample on the right (bound5all-ppmino-focall of heffen). Picture by Joydeep
- Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?
curid=20357040.

The definition of Stratocumulus clouds takes a number of different mea-
sures and applies less strict thresholds than for Cumulus clouds. First the
Cirrostratus, Cumulonimbus and Cumulus must classified, and the smallest
clouds, either in noisy models or without high kNN, must be reserved for Cir-
rus. On the remaining clouds we apply two filters. First, they must either have
kNN ≥ 0.7, SIL ≥ 0.5 or mean pairwise cosine distance ≤ 0.2. Second, either
more than half the tokens have an 𝜀 value below the minimum noise 𝜀 value or
the percentage of noise tokens in the model is lower than 10%.

Stratocumulus clouds are generally large: while 75% of either Cumulus
or Cirrus have 28 tokens or fewer, half the Stratocumulus have 26 or more.
However, in comparison to Cirrus they tend to have lower type-token ratio of

https://commons.wikimedia.org/w/index.php?curid=20357040
https://commons.wikimedia.org/w/index.php?curid=20357040
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context words4 and higher 𝐹 values of their representative context words. In
addition, the mean cosine distance between the tokens tend to be comparable
to that in Cirrus clouds, in spite of the difference in size: in other words, they
are larger but more compact and more clearly defined.

While lemmas that prefer Cumulus clouds tend to avoid Cirrus clouds and
vice versa, the relationship with Stratocumulus is not so straightforward. A
preference for Cumulus tends to go hand in hand with a preference for Stra-
tocumulus, as in the case of heffen ‘to levy/to lift’, but that is not necessarily
the case. Both gemeen ‘common/mean…’ and stof ‘substance/dust…’ prefer
Cumulus against either Cirrus or Stratocumulus, and haten ‘to hate’, which
prefers Cirrus to Cumulus, does have a slight preference for Stratocumulus
too. One lemma that prefers Stratocumulus over anything else is heilzaam
‘healthy/beneficial’, which is described in Section 6.2.1: even though its clus-
ters tend to be dominated by clear collocates of the target, they are semantically
heterogeneous.

5.2.3 Cirrus clouds
From a meteorological perspective, Cirrus clouds are high up and wispy. In
these plots, the description translate to typically small, disperse clouds that we
might not be able to isolate without the help of hdbscan. In Figure 5.5, both
clouds belong to this category.

Figure 5.5: Example of Cirrus cloud: inspiration on the left, plot example
on the right (bound5all-ppmiselection-focall of herstructureren). Picture by
Dmitry Makeev - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/
w/index.php?curid=85153684.

Cirrus clouds are defined as small clouds in noisy models or with a low kNN,
i.e. substantial overlap between the cloud and other clusters or noise tokens,
as well as the remainder of the clouds after defining the other four categories.
They are generally small, like Cumulus clouds: in a few cases they cover more
than 100 points, and they would be considered Stratocumulus if their SIL was
higher and either their kNN or the percentage of tokens below noise was higher

4Either counting all context words in the cluster or just those that are enough to cover
the tokens.

https://commons.wikimedia.org/w/index.php?curid=85153684
https://commons.wikimedia.org/w/index.php?curid=85153684
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too. In spite of their size, they have a high type-token ratio of context words
and these context words have low 𝐹 , even compared to larger Stratocumulus
clouds: in other words, they tend not to be represented by single powerful
collocates, and instead their tokens co-occur with many different, infrequent
words.

The weakness of their patterns should be seen as a tendency, rather than
a law. They are more likely than Cumulus clouds to be semantically heteroge-
neous and hard to interpret, but it is not necessarily the case. In some lemmas
with tendency to a more uniform internal structure, Cirrus clouds may group
the few patterns that emerge at all. Lemmas that prefer Cirrus clouds, such
as geestig ‘witty’, gekleurd ‘coloured’, hoekig ‘angular’ and haten ‘to hate’, are
precisely characterized by uniform-looking plots, low frequency collocates and
weak patterns overall.

5.2.4 Cumulonimbus clouds
In the physical world, Cumulonimbus clouds are puffy (as indicated by the
prefix Cumulo-) and bring rain and storm (nimbus). They are massive, towering
clouds that may lie as low as Cumulus clouds and reach as high as Cirrus clouds.
In our models, the Cumulonimbus category (the largest cluster in Figure 5.6)
is the least frequent, but when it does occur, it dominates the picture.

Cumulonimbus clouds are minimally defined as clouds that cover at least
50% of the modelled tokens, including those discarded as noise. In practice,
half of them cover at least 58.7% of the model or more, reaching as much as
95.7%. Next to them, we typically have one more cluster (in 85.6% of the
cases); occasionally we may have two (11.1%) or even up to 5. The smaller
cluster next to the massive Cumulonimbus tends to be a Cumulus, but all
combinations are attested.

Figure 5.6: Example of Cumulonimbus cloud: inspiration on the left, plot
example on the right (bound10all-ppmiweight-focall of stof ). Picture by
fir0002flagstaffotos [at] gmail.comCanon 20D + Canon 17-40mm f/4 L, GFDL
1.2, https://commons.wikimedia.org/w/index.php?curid=887553.

The most typical situation in which we encounter a Cumulonimbus cloud is
when a small group of tokens is very tight, but very different from everything
else, and the rest of the tokens are not distinctive enough to form different

https://commons.wikimedia.org/w/index.php?curid=887553
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clusters. Most of these tokens are then grouped in this large, normally disperse
Cumulonimbus cloud, which may seem to have inner structure captured by t-
sne but not by hdbscan. The small group of tokens may be brought together
by a set of similar context words (see Section 6.4), but most typically they
represent an idiomatic expression.

In fact, the lemmas with a strong preference for this format, with Cumu-
lonimbus in more than a third of their models, have a very clear idiomatic ex-
pression responsible for the small Cumulus clouds, so that the differences among
the rest of the tokens are smoothed. These are gemeen ‘common/mean…’, stof
‘substance/dust…’ and schaal ‘scale/dish’. In contrast, lemmas that barely
have any Cumulonimbus clouds (in less than 5% of the models), such as her-
roepen ‘to recant/to void’, hoekig ‘angular’, diskwalificeren ‘to disqualify’ and
horde ‘horde/hurdle’, lack such a strong pattern and have groups with similar
frequencies and mutual differences instead.

In the case of gemeen ‘common/mean…’, the tight cloud represents the
expression grootste gemene deler ‘greatest common divisor’: both groot ‘big,
great’ and deler ‘divisor’ co-occur with a large number of tokens but are, at
the type-level, different from each other and to everything else. As a result,
the token-level vectors of the grootste gemene deler ‘greatest common divisor’
tokens will be very similar to other tokens instantiating the same expression,
and very different from everything else. Similarly, the pattern most frequently
tied to this phenomenon in the case of stof ‘substance/dust…’ is stof doen
opwaaien ‘lit. to stir up dust’, an idiomatic expression referring to controversial
actions and situations. Schaal ‘scale/dish’, on the other hand, has two main
idiomatic contexts that generate Cumulonimbus clouds, discussed in Section
6.2.2.

The rest of the tokens, i.e. the Cumulonimbus cloud itself, is not defined by
either a strong dominating context word or group of similar context words, but
instead is defined against this stronger, small cloud. Cumulonimbus clouds are
not huge clouds of similar tokens, but a mass of tokens that is not structured
enough in opposition to the distinctive small cloud that is next to it. It may
have dense areas inside of it, but they are not semantically linked to each
other. The reason they are a cluster is not because the tokens are similar
to each other, as much as because the tokens in the small partner are very
coherent and different from everything else. The mean distance between tokens
in a Cumulonimbus cloud is typically very large, sometimes as large as within
Cirrostratus (noise), and significantly larger than within other kinds of clouds
— although the few examples of Cirrus and Stratocumulus co-occurring with
Cumulonimbus also have relatively large mean distances. For a discussion on
the semantic interpretation of these clouds, see Section 6.5.

5.2.5 Cirrostratus clouds
In meteorological terms, Cirrostratus clouds are high (Cirro-), flat and smooth
(-stratus) clouds. For our purposes, they just indicate the noise tokens. They
lie in the background of (almost) all our clouds and constitute 100% of two of
the medoids. Considering the entirety of the models, 146 (2.3%) of them are
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fully Cirrostratus clouds (Figure 5.7).

Figure 5.7: Example of Cirrostratus cloud: inspiration on the left, model with
100% noise on the right (nobound10lex-ppmino-focall of hoopvol). CC BY-SA
3.0, https://commons.wikimedia.org/w/index.php?curid=100381.

It might be interesting to cluster the subset of tokens that make up these
clouds, at least for some lemmas, but that is not pursued in these studies. It
would require a deeper investigation of how hdbscan works with these models,
why tokens are sometimes not clustered and how it interacts with parameters
like 𝑚𝑖𝑛𝑃𝑡𝑠. I will not try to semantically interpret these clouds, but they are
always present and affect how other clouds are defined.

5.2.6 Hail
The final, orthogonal category can apply to any cloud, and often describes a
section of it rather than the full cloud. It responds to a special criterion, to
highlight the occasional phenomenon of superdense clusters. In Figure 5.8,
three of the clouds (light blue, yellow and red) are Cumulus, while the rest are
Stratocumulus; all of them but the yellow and green clouds present Hail, that
is, extremely tight, dense circles of identical tokens. These are clouds with at
least 8 identical tokens, defined as having a cosine distance lower than 10−6.

As we can see in the blue cloud, one cluster may have more than one piece of
Hail, as is the case in some Cumulonimbus clouds. In fact, in relative numbers,
the cloud type with a higher tendency to generate Hail is the Cumulonimbus
(in 21.56% of the cases), which is very fitting for a cloud that brings storms.
Overall, 5% of the clouds, in 924 different models, have these characteristics.

These conditions are prompted by a low number of context words per token
and a low type-token ratio (ttr) of these context words (see Figure 5.9). TTR
is a measure of complexity computed as the number of different context words,
i.e. types, divided by the total number of occurrences, i.e tokens. A ttr of
1 indicates that all words are only used once, while a lower ttr results from
different words occurring multiple times. In this case, the higher the ttr, the
richer the variety of context words captured by the model for the tokens in the
cluster. Hail only covers a minority of the clouds, but it is clear that both the

https://commons.wikimedia.org/w/index.php?curid=100381
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Figure 5.8: Example of cloud with hail: inspiration on the left, plot example
on the right (rel1-ppmiselection-focall of heet). Picture by Tiia Monto, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=88743807

ttr and the number of context words per token play a role, with lower values
for the Hail clouds. Hail tends to emerge in very restrictive models where many
tokens can be grouped together because they have identical vectors: they shared
the few words that survived the thresholds. They often reveal the strongest
context words, i.e. those that also dominate in other clouds. But as we will see
in Section 6.2, the dominating context word is not always indicative of a sense.
Moreover, a larger variation in the context can give us a richer, more nuanced
picture of the distributional behaviour of the target word.
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Figure 5.9: Mapping between the type-token ratio of the context words and the
mean number of context words per token in a cluster of a medoid, by whether
the cloud has Hail.
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We might be tempted to consider these clouds idiomatic expressions: they
match, visually, what we think a representation of idiomatic expressions would
be like. Instead, they match groups of context words that occur very frequently
in a very short distance (either in terms of bag-of-words or dependency rela-
tions) to the target. It tells us something about bigrams: about how often niet
‘not’ occurs close to harden ‘to tolerate’; van ‘of’ to staal ‘steel/sample’, op ‘on’
to spot ‘spotlight’, or hang_ijzer ‘iron’ to heet ‘hot’. At the same time, all the
harden ‘to tolerate’ tokens co-occurring with niet ‘not’ are brought together
in one pattern that disregards any other possible co-occurrence, any possible
internal variation.

5.3 Patterns across types of clouds
Beyond the features used as formal criteria to define the types of clouds, we
can find patterns across other relevant features. Most of these features are
technical properties that can be extracted automatically from our dataset: the
representativeness of context words 𝐹 , their pmi with the target lemma, the
type-token ratio of context words co-occurring with the tokens in a cluster
(ttr), and their 𝜀 values. In addition, we will take advantage of the semantic
annotation and look at the entropy of the clouds, i.e. how homogeneous they
are in terms of dictionary senses. The figures in this section represent clusters
in the medoids, because including all the models results in a more cluttered
version of the same patterns.

First, we will look at the properties of the most representative context word
in each cluster, defined as the context word with a minimum frequency of 2
within the cluster and the highest 𝐹 -score (explained in Section 5.2). Figure
5.10 plots the context words’ 𝐹 on the horizontal axis and, on the vertical axis,
their pmi with the corresponding target lemma, based on a symmetric window
of 4 words to either side. The types of clouds are mapped to the colour of the
points and the fill of the marginal boxplots. Therefore, a bright purple spot at
𝑥 = 0.941 and 𝑦 = 9.89 represents a Cumulus cloud whose most representative
context word, e.g. deler ‘divisor’, has an 𝐹 of 0.941, i.e. it is a very good cue,
and a pmi with the lemma of its model, e.g. gemeen, equal to 9.8, which is very
high.

We can see that Cirrostratus clouds (noise) tend to have low 𝐹 context
words, and that these tend to have very low pmi values with the targets. Cumu-
lus clouds, on the other side, have the highest 𝐹 , i.e. they tend to be dominated
by one context word, and these context words tend to have high pmi. Cirrus
and Cumulonimbus clouds have lower values than Cumulus clouds across both
dimensions, while Stratocumulus spans in between. Moreover, the correlation
between 𝐹 and pmi is moderate to weak, with a higher value among Cumulus
clouds (Spearman’s 𝜌 = 0.55, p-value < 0.001) and much lower and/or less
significant for Cumulonimbus and Cirrostratus (𝜌 = 0.05, p-value ≈ 0.085 and
𝜌 = -0.15, p-value < 0.001, respectively), with minimal changes for different
PPMI settings.

Second, we will look at the relationship between the highest 𝐹 -score and
the type-token ratio (ttr, described in Section 5.2.6). They are mapped to
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Figure 5.10: Mapping between the highest 𝐹 between the clouds of the medoids
and a context word and that context word’s pmi with the target, coloured by
cloud type.

the horizontal and vertical axes respectively in Figure 5.11. As we can see,
both Cirrus and Cirrostratus clouds tend to have a higher ttr than the rest;
indeed, they also tend not to have Hail (see Table 5.1). In general, the more
different context words we find in the cluster — the higher the ttr —, the
lower is the representativity of the strongest context word — the lower the
𝐹 —, but there is a really wide range of variation, and each type of cloud
has a different profile. Cirrostratus clouds have higher ttr and lower 𝐹 , while
the opposite defines Cumulus clouds; Stratocumulus and Cumulonimbus clouds
have similar ttr to Cumulus but lower or much lower 𝐹 , and the ttr in Cirrus
clouds is comparable to Cirrostratus, with a much higher 𝐹 -score. In short,
both the variety of context words co-occurring with the tokens of a cluster
and the 𝐹 -score of the most relevant of them play a role in the shape that
the clouds take. This relationship notwithstanding, we should note that other
factors also intervene, both in the constitution of the clusters and their semantic
interpretation, such as the representativeness of other context words and the
type-level distances between them.

Third, we will look at the 𝜀 values across different cloud types. They were
part of their definition, insofar the proportion of tokens with a lower 𝜀 than
the lower noise 𝜀 is a criterion for Cumulus, Stratocumulus and Cirrus clouds.
Nevertheless, it could be useful to summarize the resulting patterns. In that
spirit, Figure 5.12 shows, for each of the clusters in the medoids, the minimum,
mean and maximum 𝜀 within a cluster. Note that this gives us no insight on the
relationship between the 𝜀 of the tokens in the cluster and the values in other
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Figure 5.11: Mapping between the highest 𝐹 of a context word to a cluster and
the type-token ratio (ttr) of context words in the cluster, coloured by cloud
type.

tokens, either clustered or noise. As we would expect, Cirrostratus clouds
tend to have the highest 𝜀: their tokens are disperse, far away from other
tokens. Cumulus, Stratocumulus and Cirrus tend to have relatively similar
values, although some Cumulus clouds are quite low and Cirrus clouds are
quite flat and never very low. The differences between them are more likely
to be found in their relationship with the noise 𝜀. Cumulus clouds stand out
as dense areas against a very disperse (i.e. high 𝜀) background, whereas Cirrus
clouds are just slightly denser than the rest of the clouds in their surroundings.
Think of the uniform plots of haten and hoop in Figure 5.1 and the hdbscan
interpretation in Figure 5.2: all the tokens look, roughly, equally disperse.
Finally, Cumulonimbus clouds exhibit the widest range of all: their tokens
vary from very dense areas, i.e. very low 𝜀, to very disperse ones, i.e. high 𝜀.

These characteristics can be roughly mapped to the altitude of the clouds
from a meteorological perspective (see Figure 5.13). Figure 5.12 relies on a
common everyday metaphor: high values above, low values below. But what
counts as high and low here is rather arbitrary: low 𝜀 indicates a dense area in
the plots, that is, that a token can find its 7 nearest neighbours in a very small
radius, while a high 𝜀 indicates a sparse area, with large distances between a
token and its nearest neighbours. At the same time, the metaphor of altitude
is also coherent with the original goal of this mapping: the low values, or high
densities, stand out to the viewer as if they were closer. Similarly, if we look
at clouds on the sky from below, lower clouds are going to stand out: that is
the case of Cumulus, Stratocumulus and, naturally, Cumulonimbus clouds.
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Figure 5.13: Graphical representation of meteorological clouds at different alti-
tudes. By Christopher M. Klaus at w:en:Argonne National Laboratory - Own
work by en:User:Klaus, Public Domain, https://commons.wikimedia.org/w/
index.php?curid=2760873
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Finally, Figure 5.14 shows the entropy5 of clouds of different types in terms
of the manually annotated senses, against the entropy across the whole model.
Entropy is a measure of information, and in this case it works as follows: the
higher the entropy, the more variation of senses and the more balanced their
frequencies; the lower the entropy, the more one sense dominates. We would like
the entropy of the cluster (the 𝑦-axis in Figure 5.14) to be as low as possible,
that is, for the cluster to be as homogeneous as possible in terms of senses.
At the same time, models with a higher initial entropy — due to the sense
distribution of the lemmas they model — are more likely to have clusters with
higher entropy.

On the one hand, the horizontal boxplots show that clouds of all types
are equally likely to emerge in any model regardless of their sense distribu-
tion. This is consistent with the point I make in Chapter 6 that clouds do not
model senses. On the other hand, the vertical boxplots show that the different
cloud types do tend to exhibit different entropy values. Cumulus clouds are
the most homogeneous, while the Cumulonimbus clouds tend to be as hetero-
geneous as Cirrostratus (noise) — they might even have higher entropy than
their models as a whole. Cumulus clouds in particular, but sometimes also
Stratocumulus and maybe Cirrus, may be completely homogeneous regardless
of the sense composition of the model itself, but they can also have higher
entropy. Stratocumulus clouds tend to have slightly lower entropy than Cirrus
clouds, i.e. they tend to be more homogeneous, even though they also tend to
be larger.
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Figure 5.14: Mapping between the entropy in a medoid and in a cluster by
cloud type.

5Computed with entropy::entropy() (Hausser & Strimmer 2021).
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5.4 Summary
Token-level distributional models process a wealth of complex, messy infor-
mation and try to return clear, interpretable patterns. These patterns take
different forms: sometimes we have very clear, isolated, dense groups of similar
tokens, like our ideal image of clouds in a clear sky; other times, a pattern is
harder to find, and we barely catch a few clear wisps against an overcast sky.
The clouds of one model are not independent from each other, and depend-
ing on the power of their leading context words they might merge into larger
masses or split into smaller groups; powerful small Cumulus clouds may force
everything else into a huge Cumulonimbus clouds, and the tension between its
semantic fields might even create Hail.

In this chapter we have seen the variety of shapes that emerges from these
distributional models, in particular in the interaction between the t-sne visu-
alization with perplexity 30 and the hdbscan clustering with 𝑚𝑖𝑛𝑃𝑡𝑠 = 8. We
have linked the visual results to the variety of context words and their repre-
sentativeness, and we have found patterns in their semantic homogeneity. We
know that all lemmas exhibit all types of clouds, but in different proportions,
related to their tendency towards strong collocational patterns. In the next
chapter, we will delve into the linguistic interpretation of these clouds, that is,
their collocational properties and their relationship to the manually annotated
dictionary senses.
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Chapter 6

The language of clouds

In linguistic terms, clouds may provide us with different types of informa-
tion, both at syntagmatic and paradigmatic level. At the syntagmatic level,
they may illustrate cases of collocation, colligation, semantic preference or even
tendencies towards the open-choice principle. The paradigmatic level, on the
other hand, codes the relationship between the clusters and dictionary senses,
from heterogeneous clusters to those that represent (proto)typical contexts of
a sense.

Given a naive understanding of the correlation between context and mean-
ing, we would mostly expect, from the paradigmatic perspective, clusters that
equal senses: each cloud would cover all the occurrences of a dictionary sense
and only the occurrences of that sense. However, even if we relax the require-
ments, expecting mostly homogeneous clusters covering most of the clustered
tokens, this does not arise often. Instead, even homogeneous clusters only
group typical contexts within a sense, which, at the syntagmatic level, tend to
correspond to collocations. In any case, as we will see in this chapter, the full
picture is more complex, and we can obtain much richer information than just
lexical collocations representing typical contexts within a sense.

In this chapter, we will look into the types of syntagmatic and paradigmatic
information that the clouds offer. Section 6.1 starts with an overview of the
different levels in each dimension and mentions a few examples of their inter-
action in a contingency table. We then elaborate with more detailed examples
of each in situation in sections 6.2 through 6.5, and round up with an overall
summary in Section 6.6.

6.1 Types of information
The linguistic information obtainable from the clusters can be understood from
the syntagmatic perspective as co-occurrence patterns of different kinds, and
from the paradigmatic perspective in relation to dictionary senses. Both di-
mensions interlace, resulting in a number of specific phenomena that we may
encounter. The relationship is summarized in Table 6.1; the syntagmatic or
collocational dimension is represented by the columns and discussed in Section
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6.1.1, and the paradigmatic or semantic dimension is represented by the rows
and discussed in Section 6.1.2.

6.1.1 Collocational perspective
In order to interpret the different levels of information that a syntagmatic
or collocational perspective may offer us, we can make use of some theoreti-
cal concepts from the foundations of Corpus Linguistics. Some of the terms
were already coined by Firth (1957), but they were integrated in a framework
for corpus analysis by Sinclair (1998: 124-125) and other publications. The
framework includes, next to the node, i.e. our targets, four key components:
one obligatory — semantic prosody, which will not be discussed here — and
three more that will help us make sense of the observed output of the clouds:
collocation, colligation and semantic preference.

In their simplest form, collocations are defined as the co-occurrence of
two words within a certain span (Firth 1957: 13, Sinclair 1991: 170, 1998: 15,
Stubbs 2009: 124). They might be further filtered by the statistical significance
of their co-occurrence frequency or by their strength of attraction; such as
pmi (see McEnery & Hardie 2012: 122-133 for a discussion). Even though a
collocational relationship is asymmetric, that is, the co-occurrence with a more
frequent word B may be more important for the less frequent word A than for
B, the measures used to described it are most often symmetrical (Gries 2013).
When it comes to the interpretation of clouds, this category takes a different
form and is definitely asymmetric. Considering models built around a target
term or node, frequent, distinct context words are bound to make the tokens
that co-occur with them similar to each other and different from the rest: they
will generate clusters. Such context words do tend to have a high pmi with the
target, but, crucially, they stand out because they are a salient feature among
the occurrences of the target, independently from how salient the target would
be when modelling the collocate. Concretely, we are talking about clusters
defined by one context word or a group of co-occurring context words with a
high 𝐹 -score in relation to the cluster: these context words can be interpreted as
collocates of the target. Unlike in most collocational studies, where you study
a list of words that co-occur (significantly) frequently with your target node,
vector space models allow you to see whether these context words exclude each
other or also co-occur within the context of the target. In fact, we might even
find more complex collocational patterns, including multiple context words.

Whereas collocation is understood as a relationship between words (and,
traditionally, as a relationship between word forms), colligation is defined as a
relationship between a word and grammatical categories or syntactic patterns
(Firth 1957: 14, Sinclair 1998: 15, Stubbs 2009: 124). In order to capture
proper colligations as clusters, we would need models in which parts of speech
or maybe dependency patterns are used as features, which is not the case
in these studies. However, by rejecting a strict separation between syntax
and lexis (for everything is semantics in Cognitive Linguistics), we can make a
grammatically-oriented interpretation of collocations with function words, such
as frequent prepositions or the passive auxiliary. Given this caveat, we will talk
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about lexically instantiated colligations when we encounter clusters dominated
by items that indicate a specific grammatical function.

Semantic preference is defined as the relationship between a word and
semantically similar words (Sinclair 1998: 16, Stubbs 2009: 125, McEnery &
Hardie 2012: 138-140). Within traditional collocational studies, this implies
grouping collocates, that is, already frequently co-occurring items, based on se-
mantic similarity, much as colligation can be the result of grouping collocates
based on their grammatical categories. Compared to collocation, its identifica-
tion requires more interpretation on the part of the researcher. In the interpre-
tation of individual clusters, semantic preference appears in clusters that are
not dominated by a single collocate or group of co-occurring collocates, but are
instead defined by a group of infrequent context words with similar type-level
vectors and for which we can give a semantic interpretation. (Cases of similar
context words without a semantic interpretation are quite rare, and normally
involve pronouns or adverbs.) This is a key contribution of token-level distribu-
tional models that may remain inaccessible in traditional collocational studies:
next to powerful collocates that group virtually identical occurrences, we can
identify patterns in which the context words are not the exact same but are
similar enough to emulate a collocate.

The three notions described above assume identifiable patterns: occurrences
that are similar enough to a substantial number of other occurrences, and
different enough from other occurrences, to generate a cluster. Going back
to Sinclair (1991)’s founding notions, we are assuming the domination of the
idiom principle:

…a language user has available to him or her a large number of semi-
preconstructed phrases that constitute single choices, even though
they might appear to be analysable into segments. (Sinclair 1991:
110)

The opposite situation would be given by the open-choice principle:

At each point where a unit is completed (a word or a phrase or a
clause), a large range of choice opens up and the only restraint is
grammaticalness. (Sinclair 1991: 109)

The idiom principle and the open-choice principle are supposed to organise
the lexicon and the production of utterances. But if, instead, they are under-
stood as poles in the continuum of collocational behaviour, they can help us
interpret the variety of shapes that we encounter within and across lemmas.
Lemmas in which we tend to find identifiable clusters, with strong collocations,
lexically instantiated colligations or sets with semantic preference, can be said
to respond to the idiom principle. In contrast, lemmas that exhibit large pro-
portions of noise tokens, and small, diffuse clusters (Cirrus clouds, mostly),
can be said to approximate the open-choice principle. They don’t necessarily
lack structure, but whatever structure they have is less clear than for other
lemmas, and harder to capture with these models. With this reasoning, next
to the three categories described above, we include near-open choice as a
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fourth category, meant to include the clouds that do not conform to either of
the clearer formats.

6.1.2 Semantic perspective
In terms of the relationship between the hdbscan clusters and the manually
annotated dictionary senses, we can initially distinguish between heterogeneous
clusters, i.e. those that do not exhibit a clear preference for one sense, and
homogeneous clusters. Secondly, the homogeneous clusters may cover all the
(clustered) tokens of a given sense, or only part of it, i.e. a (proto)typical
context of the sense. Additionally, said (proto)typical context may highlight a
certain aspect or dimension of the meaning of the target, different from that
highlighted by a different context.

As a result, the semantic dimension covers four different types of situations.
The first one, i.e. heterogeneous clusters or clusters with multiple senses, would
normally be interpreted as bad modelling, if we consider the senses a gold stan-
dard and the target of our models. It is also the most frequent interpretation of
the near-open choice clouds. Nonetheless, they can also occur in other kinds of
clouds, and as such illustrate the mismatch between contextual and semantic
structure: clear contextual patterns do not imply dictionary senses. The second
type of situation, i.e. clusters that perfectly match senses, is the ideal situation
and what we would initially expect from distributional models. Instead, it is
quite rare and often indicative of fixed expressions or very particular meanings.
Rather than full senses, contextual patterns tend to represent (proto)typical
contexts of a sense.

As it was already described in Section 1.2.2, the notion of prototypicality
in Cognitive Semantics is related to the principle that categories need not
be discrete and uniform and to its application to the semasiological structure
of lemmas and their meanings (Geeraerts 1988, 1997). At the extensional
level, which in this case covers the domains or contexts of application of our
target item, categories may be defined by a varied set of overlapping features
(i.e. context words) and have fuzzy boundaries and/or degrees of membership.
The central or more prototypical members of this category exhibit more of these
overlapping features; the fewer features co-occur with an item, the weaker its
connection to the category. As they appear in the clouds, a sense may exhibit
one typical context that is much more frequent and clear that the rest, or
multiple typical contexts with similar frequencies. Unfortunately, neither t-
sne nor hdbscan provide a reliable mapping between quantitative properties
and relative centrality of the clusters. In contrast, we can identify central
cases within an hdbscan cluster based on their membership probability, which,
as briefly mentioned before, is the normalized core distance within a cluster.
Items with a higher membership probability lie in a denser area of an hdbscan
cluster, and therefore have more items similar to it than the items in sparser
areas. They do not necessarily occur in the euclidean centre in the t-sne
plot, but might form one or more dense cores closer towards an edge instead.
In addition, we can distinguish between rather uniform clusters, in which all
members have a similar weight, from more diverse clusters with dense cores
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and sparse peripheries.
Extensional prototypicality works at multiple levels. We could identify

(proto)typical instances/contexts of a lemma, of a particular sense, or of a di-
mension of a sense. In this last case, we run into an interaction with intensional
prototypicality. On the one hand, we find multiple extensionally prototypical
patterns, i.e. two or more groups of attestations that instantiate different pat-
terns. On the other, each of these patterns correlates with a different semantic
dimension or aspect, wich means that that meaning dimension is salient (in-
tensional prototypicality) to that pattern.

6.1.3 Interaction between dimensions
As we can see in Table 6.1, the interaction between the four levels of each
dimension result in a 4x4 table with all but two cells filled with at least one
example. Naturally, not all the combinations are equally frequent or interesting;
the most salient one is certainly the collocation that indicates the prototypical
context of a sense. But this does not mean that the rest of the phenomena
should be ignored: we can still find interesting and useful information with
other shapes of clouds, other contextual patterns, other semantic structure.

In the following sections, we will look in detail at examples of each attested
combination. Each section will focus on one level of the collocational dimension,
and will be further subdivided by the levels of the semantic dimension. The
examples will be illustrated with scatterplots in which the colours represent
hdbscan clusters, the shapes indicate manually annotated dictionary senses,
and the transparency, the 𝜀 value from hdbscan. The senses are not specified
in the legends, but the clusters will be named with the context word that
represents it best (see Section 5.2). Textual reproductions of some tokens will
also be offered; in all cases the target will be in bold face and the context words
captured by the relevant model, in italics. The name of the newspaper, the
date of publication and the number of the article will follow the original text,
and the following paragraph will reproduce the English translation between
simple inverted commas.
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Table 6.1: Contingency table between the collocational and semantic perspectives, with a few examples.
Semantic in-
terpretation

Single collocation Lexically instantiated colligation Semantic preference Near-open
choice

Heterogeneous
clusters

heilzaam ‘healthy/beneficial’ +
werking ‘effect’ (and relatives)

herstructureren ‘to restructure’ +
passive aux. word (part of the two
transitive senses); helpen ‘to help’ +
om & te ‘in order to’

geestig ‘witty’ + wijze/manier
‘manner’/various adverbs; grijs
‘grey’ + colours and clothes;
herroepen ‘to recant/to void’ +
uitspraak ‘statement/verdict’ &
juridical field

blik
‘gaze/tin’ -
werpen ‘to
throw’,
richten ‘to
aim’

Dictionary
clusters

staal ‘sample’ + representatief
‘representative’; schaal ‘dish of a
scale’ + gewicht ‘weight’; schaal
‘scale’ + Richter

herhalen ‘to repeat’ + zich ‘itself’;
hoop ‘hope/heap’, in the one model
that gets the senses right

haken ‘to make trip/to crochet’ +
sports terms or hobby terms; schaal
‘scale’ + earthquake-topic or
kitchen-topic

huldigen ‘to
honour’

(Proto)typical
context

heffen ‘to levy/to lift’ and all its
collocates (except for hand/arm);
hachelijk ‘dangerous/critical’ and its
collocates

diskwalificeren ‘to disqualify’ +
passive aux. word; helpen ‘to help’ +
different pronouns/prepositions (bij,
aan) as only remaining context
words; herinneren ‘to remember/to
remind’ + (er)aan ‘of (it)’, ik ‘I’ &
reflexive pron. me, zich

grijs ‘grey’ + cars; heet ‘hot’ + food;
hemels ‘heavenly’ + music; dof ‘dull’
+ sounds

-Not
relevant-

(Proto)typical
context with
profiling

stof ‘substance’ and its adjectives;
horde ‘horde’

horde ‘horde’ + journalist & door
‘by’

geldig ‘valid’ + tickets & dates /
identity documents & voorleggen
‘submit’ /bezitten ‘possess’; staal
‘steel’ + ton & milioen ‘million’ /
materials

-Not
relevant-
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6.2 Collocation
The first level of the collocational or syntagmatic dimension is that of the
collocation: clusters dominated by one context word or a group of co-occurring
context words. They are most likely to be found as Cumulus clouds, but also
as Stratocumulus clouds or, very rarely, Cirrus clouds.

6.2.1 Heterogeneous clouds
Albeit infrequently, collocations might transcend senses, that is, they might be
frequent and even distinctive of a lemma without showing a preference for a
specific sense. The most clear example is found in heilzaam ‘healthy/beneficial’,
which can mean that something is literally beneficial for the health or be ap-
plied, metaphorically, to other domains as well. Its clusters tend to be dom-
inated by one context word that is not indicative of any one sense: mostly
werking ‘effect’ and effect, adding in some models the less frequent invloed ‘in-
fluence’. Some examples of are shown in (5) and (6) for the ‘healthy’ sense and
(7) and (8) for the ‘beneficial’ sense.

(5) Het lypoceen, een bestanddeel dat bijdraagt aan de rode kleur, zou een
heilzame werking hebben op de prostaat. (De Volkskrant, 2003-11-08,
Art. 14)
‘Lypocene, a component that contributes to the red colour, would have a
healing power on the prostate.’

(6) Pierik beschrijft de heilzame effecten van alcoholgebruik op de bloedvaten
en de bloeddruk, op mogelijke beroerten, galstenen, lichaamsgewicht,
vruchtbaarheid, zwangerschap, botontkalking, kanker, verkoudheid, suik-
erziekte en seniele dementie. (NRC Handelsblad, 1999-11-27, Art. 148)
‘Pierik describes the healing powers of alcohol consumption on [the] blood
vessels and [the] blood pressure, on potential strokes, gallstones, body
weight, fertility, pregnancy, osteoporosis, cancer, the cold, diabetes and
senile dementia.’

(7) Voor politici met dadendrang een gruwel, maar als men de casus van de
Betuwelijn nog voor de geest haalt dan zou het advocatensysteem zijn
heilzame werking hebben kunnen bewijzen. (De Volkskrant, 2002-03-29,
Art. 79)
‘For politicians with thirst for action it is an abomination, but when one
recalls (lit. ‘brings to the spirit’) the case of the Betuwe line then the
lawyer system would have been able to prove its beneficial effect.’

(8) De kwestie heeft alvast één heilzaam effect: het profiel van commerciële
boekenprijzen staat opnieuw ter discussie. (De Standaard, 1999-03-27,
Art. 133)
‘The matter certainly has a beneficial effect: the profile of commercial
book prizes is again under discussion.’
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The model is shown in Figure 6.1: the clusters dominated by werking ‘ef-
fect’, effect and invloed ‘influence’ are shown in yellow, light blue and green,
respectively, and the manually annotated senses are mapped to the shapes: the
literal ‘healthy’ sense is coded in circles, and the general sense, in triangles. All
but the invloed ‘invloed’ cluster, a Cumulus, are Stratocumulus clouds.

Within the werking ‘effect’ cluster, the literal tokens (as in (5)) are the
majority and tend towards the left side of the cloud, whereas the general ones
(like (7)) tend towards the right side. While there is a preference for the literal
sense, especially considering that across the full sample the general sense is
more frequent, it is far from homogeneous. The balance is even more striking
within the effect cluster. Such a picture is pervasive across multiple models
of heilzaam ‘healthy/beneficial’. The vague organization within the werking
‘effect’ cluster suggests that it is not necessarily the case that the models do
not capture words representative of ‘physical health’, but they have to compete
with the most salient context words, which are not precisely discriminative of
these two senses.

cluster

ben/verb (0.56)

effect/noun (0.96)

invloed/noun (1)

werking/noun (0.95)

NA

Figure 6.1: Cloud of heilzaam: bound10all-ppmiweight-focall. Circles are
‘healthy, healing’, triangles are ‘beneficial’ in general.

This is an issue if we come to the distributional semantics expecting lex-
ical collocates, such as werking ‘werking’, effect, and invloed ‘influence’, to
unequivocally represent different dictionary senses. On the other hand, ben ‘to
be’ and werk ‘to work, to have an effect’ (of which werking is a nominaliza-
tion), co-occur with the tokens in the orange cluster, dominated by the general
sense, and less so outside this cluster; see examples (9) and (10). In other
words, the most frequent nouns modified by heilzaam ‘beneficial’ tend to oc-
cur in attributive constructions (particularly een heilzame werking hebben ‘to
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have a beneficial/healing effect/power’ and de heilzame werking van ‘the ben-
eficial/healing effect/power of’) and for either sense, whereas the predicative
constructions present a wider variety of nouns and a stronger tendency towards
the general sense.

(9) Versterking van de politieke controle op de Commissie kan heilzaam zijn
maar de huidige ongenuanceerde discussie is gevaarlijk voor Europees
beleid en besluitvorming. (De Morgen, 1999-03-18, Art. 45)
‘Reinforcement of the politicial control at the Commission can be bene-
ficial, but the current unnuanced discussion is dangerous for European
policy and decision-making.’

(10) Ten slotte nog één fundamentele bedenking: ook de permanente actu-
aliteit van de thematiek in de media werkt heilzaam op de weggebruikers.
(De Morgen, 2001-02-28, Art. 107)
‘To conclude, one final fundamental thought: the permanent presence of
the topic in the media has a beneficial effect (lit. ‘works beneficially’)
on road users.’

The models of heilzaam ‘healthy/beneficial’ show that that we cannot take
for granted that collocations will be representative of senses. What is more,
they illustrate how neither a high pmi nor their selection as cues by human
annotators guarantee that a context word distinguishes predefined senses, given
that these words have both a high pmi with heilzaam ‘healthy/beneficial’ and
were often selected as cues by the annotators (recall Tables 4.5 and 4.6 in
Chapter 4) . When it comes to pmi, it is understandable: the measure is
meant to indicate how distinctive a context word is of the type as a whole,
in comparison to other types. It does not take into account how distinctive it
is of a group of occurrences against another group of occurrences of the same
type. When it comes to cueness annotation, however, we could have expected
a more reliable selection, but apparently the salience of these context words is
too high for the annotators to notice that it is not distinctive of the different
senses.

6.2.2 Dictionary clouds
In a few cases we can see clusters characterized by one dominant context word
that perfectly match a sense, or at least its clustered tokens. These are nor-
mally fixed expressions, at least to a degree: the definition of the sense itself
may specify a required expression, such as representatieve staal ‘representative
sample’.

An interesting example is shown in Figure 6.2, a model of the noun schaal
‘scale/dish’. In the plot, the ‘scale’ homonym is represented by circles (‘a range
of values, e.g. the scale of Richter, a scale from 1 to 5’), squares (‘magnitude,
e.g. on a large scale’) and a few triangles (‘ratio, e.g. a scale of 1:20’), whereas
the ‘dish’ homonym is represented by crosses (‘shallow wide dish’) and crossed
squares (‘dish of a scale’). Both the ‘range’ and the ‘dish of scale’ senses,
exemplified in (11) and (12), have a perfect match (or almost) with an hdbscan
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cluster, represented by a context word with perfect 𝐹 -score. All the schaal
tokens co-occurring with Richter are grouped in the red Cumulus cloud, and
cover almost the full range of attestations of the ‘range’ sense, and all the tokens
co-occurring with gewicht ‘weight’ are grouped in the light blue Cumulus cloud
and cover all the attestations of the ‘dish of a scale’ sense. The blue cloud of
crosses is also an homogeneous Cumulus dedicated to the ‘shallow wide dish’
sense, but not dominated by a collocate, and the rest are variably homogeneous
Stratocumulus clouds representing parts of the ‘magnitude’ sense.

(11) Wenen, Beneden-Oostenrijk en Burgenland zijn dinsdagochtend
opgeschrikt door een aardschok van 4,8 op de schaal van Richter. (Het
Nieuwsblad, 2000-07-12, Art. 4)
‘Vienna, Lower Austria and Burgenland have been scared up on Tuesday
morning by an earthquake of 4.8 on the Richter scale.’

(12) Daarom is het van belang dat Nederland zich deze week achter de VS heeft
geschaard, ook al legt ons land natuurlijk minder gewicht in de schaal
dan Duitsland in het Europese debat over de al dan niet noodzakelijke
toestemming van de Veiligheidsraad voor militaire actie tegen Irak. (NRC
Handelsblad, 2002-09-07, Art. 160)
‘Therefore it is important that the Netherlands has united behind the US
this week, even though our country has of course less influence (lit. ‘places
less weight on the dish of the scale’) than Germany in the European
debate on the potentially necessary permission of the Security Council
for military action against Iraq.’

In a way, the phenomenon indicates a fixed, idiomatic expression: a combi-
nation of two or more words that fully represents a sense. However, the picture
is more nuanced. First, technically, the ‘range’ sense can potentially occur with
more context words than Richter. In fact, one of the examples given to the
annotators is schaal van Celsius ‘Celsius scale’, as well a pattern like the one
found in (13), one of the orange circles at the top of Figure 6.2. However, in
the corpus used for these studies, Celsius does not co-occur with schaal in a
symmetric window of 4; moreover, of the 32 tokens of this sense attested in this
model, 22 co-occur with Richter, 3 follow the pattern from (13), and the rest
exhibit less fixed patterns or the infrequent glijdende schaal ‘slippery slope’
construction. The few matching (13) are more readily clustered with other
tokens co-occurring with the preposition op ‘on’, such as (14). In other words,
in the register of newspapers, the ‘range’ sense of schaal is almost completely
exhausted in the schaal van Richter ‘Richter scale’ expression.

(13) ”Misschien deelt de computer mij op grond van statistische analyses op
een schaal van 1 tot 12 in categorie 3”, zegt woordvoerder B. Crouwers
van de registratiekamer. (NRC Handelsblad, 1999-01-09, Art. 10)
‘”Maybe the computer on the basis of statistical analyses on a scale of
1 to 12 puts me in category 3”, says spokesperson B. Crouwers of the
registration chamber.’
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(14) Die stad vormde de opmaat tot de latere collectieve regelingen op na-
tionale schaal, stellen de auteurs, in navolging van socioloog prof. dr.
Abram de Swaan. (De Volkskrant, 2003-05-03, Art. 253)

‘That city was the prelude to the later collective arrangements at national
level (lit. ‘on a national scale’), state the authors, in accordance with
sociologist Prof. Dr. Abram de Swaan.’

Second, the ‘dish of a scale’ sense need not be used in the metaphorical
expression illustrated in (12), but that is indeed the case in our data. Next to
gewicht ‘weight’, these tokens also mostly co-occur with leg ‘to lie, to place’ or,
in lesser degree, with werp ‘to throw’. Even in other models, this cluster tends
to be built around the co-occurrence with gewicht ‘weight’, normally excluding
tokens that only co-occur with leg ‘to lie, to place’, which do not belong to the
same sense any more.

cluster

Europees/adj (0.33)

gewicht/noun (1)

groot/adj (0.96)

klein/adj (0.71)

met/prep (0.35)

Richter/name (1)

NA

Figure 6.2: Cloud of schaal: nobound5all-ppmiweight-focall. Within the
‘scale’ homonym, circles are ‘range’; triangles, ‘ratio’, and squares, ‘magni-
tude’; for the ‘dish’ homonym, crosses represent ‘dish’ and crossed squares,
‘dish of a scale’.

These examples don’t disprove the possibility of clouds dominated by a
collocate perfectly covering a sense, as long as we keep in mind the character-
istics and limitations of the corpus we are studying and the difference between
describing “how a sense is used” and “how a sense is used in this particular
corpus”.
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6.2.3 (Proto)typical contexts
The most frequent phenomenon among Cumulus and Stratocumulus clouds is a
cluster dominated by one context word or group of co-occurring context words
that represents a (proto)typical context of a sense. It may be the prototypical
context, if the rest of the sense is discarded as noise or spread around less clear
clusters, but we might also find multiple clusters representing different typical
contexts of the same sense. Neither t-sne nor hdbscan can tell whether one
of these contexts is more central than the other, at least not in the same sense
we would expect from prototype theory. Denser areas of tokens, as perceived
by hdbscan, are those where many tokens are very similar to each other. The
more tokens are similar, and the more similar they are, the denser the area. As
we will see in this example, this is not a good proxy for prototypicality.

One of the most clear examples of this phenomenon is found in heffen ‘to
levy/to lift’, whose typical objects are also characteristic of its two main senses
(see Figure 6.3). On the one hand, the ‘to levy’ sense occurs mostly with
belasting ‘tax’, tol ‘toll’1, and accijns ‘excise’, as shown in (15) through (17).
Their frequencies are large enough to form three distinct clusters, which tend
to merge in the following levels of the hdbscan hierarchy, that is, they are
closer to each other than to the clusters of the other sense. On the other hand,
the ‘to lift’ sense occurs with glas ‘glass’, where the final expression een glas(je)
heffen op takes the metonymical meaning ‘to give a toast to’ (see (18)), and
with the body-parts hand, arm and vinger ‘finger’, in which they might take
other metonymical meanings. The latter group does not really belong to this
“collocation” category but to “semantic preference” (see Section 6.4).

(15) Op het inkomen boven die drie miljoen gulden wil De Waal honderd pro-
cent belasting heffen. (Het Parool, 2001-05-02, Art. 99)
‘De Waal wants to levy a one hundred percent tax on all incomes above
that three million guilders.’

(16) Mobiliteitsproblemen, rekeningrijden, op een andere manier het gebruik
van de weg belasten, kilometers tellen, tol heffen — de mogelijkheden om
de ingebouwde chip te benutten zijn vrijwel onbeperkt. (NRC Handels-
blad, 1999-10-02, Art. 31)
‘Mobility problems, road pricing, taxing the use of roads in a different
way, counting kilometres, levying taxes — the possibilities to utilize the
built-in chip are almost unlimited.’

(17) …in landen als Groot-Brittannië (waar de accijnzen op 742 euro per 1.000
liter liggen), Italië en Duitsland (die beide accijnzen boven de 400 euro
heffen) komt de harmonisering ten goede van de transportsector. (De
Morgen, 2002-07-25, Art. 104)
‘…in countries like Great Britain (where excise duties are at 742 euros per
1,000 liters), Italy and Germany (both of which levy excise duties above
400 euros) the transport sector benefits from the harmonization.’

1Typical of the Netherlandic sources, since tolls are not levied in Flanders.
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(18) Nog twaalf andere deelnemers konden maandagavond het glas heffen op
de hoogste winst. (De Standaard, 2004-10-20, Art. 150)
‘On Monday night another twelve participants could raise their glasses
to the highest profit.’

As we can see in Figure 6.3, the model is very successful at separating the
two senses and the clusters are semantically homogeneous: the most relevant
collocates of heffen ‘to levy/to lift’ are distinctive of one or the other of its
senses. Crucially, no single cluster is even close to covering a full sense; in-
stead, each of them represents a prototypical pattern that stands out due to its
frequency, internal coherence and distinctiveness. It seems reasonable to map
the clusters to prototypical patterns because of their frequency and distinctive-
ness, but we should be careful about how we apply the results of the modelling
to this kind of semantic analysis. From the perspective of prototype theory, a
feature of a category is more central if it is more frequent, i.e. it is shared by
more members, while a member is more central if it exhibits more of the defin-
ing features of the categories. As such, within the ‘to levy’ sense, the belasting
heffen ‘to levy taxes’ pattern is the most central, and tokens instantiating such
a pattern will be more central. In contrast, hdbscan prioritizes dense areas,
that is, groups of tokens that are very similar to each other. Thus, membership
probabilities, which we might be tempted to use as proxy for centrality, indi-
cate internal consistency, lack of variation. From such a perspective, given that
belasting heffen ‘to levy taxes’ is more frequent and applies to a wider variety
of contexts than the other two patterns of ‘to levy’, its area is less dense, and
its tokens have lower membership probabilities within a compound of ‘to levy’
clusters. In other words, the models can offer us typical patterns of a lemma
and of its senses and tell us how distinctive they are from each other and how
much internal variation they present. Beyond this information, they don’t map
in a straightforward manner to our understanding of prototypicality.

It must be noted that clusters defined by collocations may not be just char-
acterized by one single context word, but by multiple partially co-occurring
context words. A clear example is hachelijk ‘dangerous/critical’, where both
senses are characterized by prototypical contexts, exemplified in (19) through
(24): onderneming ‘undertaking’, zaak ‘business’ and avontuur ‘adventure’ for
the ‘dangerous, risky’ sense, moment, situatie ‘situation’, and positie ‘position’
for the ‘critical, hazardous’ sense. A model is shown in Figure 6.4, where only
the yellow, orange and green clusters are Cumulus clouds, and the rest, Stra-
tocumulus. These six frequent context words are paradigmatic alternatives of
each other, all taking the slot of the modified noun, i.e. the entity characterized
as dangerous or critical. However, unlike its very near type-level neighbour sit-
uatie ‘situation’, positie ‘position’ may also co-occur with bevrijd ‘to free’ (and
uit ‘from’) and, additionally, with brandweer ‘firefighter’, typically in Belgian
contexts. The frequency of these co-occurrences in the sample, next to the type-
level dissimilarity between these three lexical items, splits the co-occurrences
with positie ‘position’ in three clusters (in light blue, green and red in Figure
6.4), based on these combinations.

(19) Het is geen gewaagde stelling dat de deelname van de LPF aan de regering
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cluster

accijns/noun (0.86)

belasting/noun (0.92)

glas/noun (0.94)

hand/noun (0.6)

tol/noun (1)

NA

Figure 6.3: Cloud of heffen: bound10all-ppmiweight-focnav. Circles are ‘to
lift’, triangles are ‘to levy’.

een hachelijke onderneming blijft. (De Volkskrant, 2002-08-05, Art. 46)
‘It is not a bold statement that the participation of the LPF in the gov-
ernment remains a risky undertaking.’

(20) Daar baseerden de media zich op slechts één bron, en elke journalist weet
dat dat een hachelijke zaak is. (De Volkskrant, 2004-05-05, Art. 42)
‘The media relied on only one source, and every journalist knows that
that is a dangerous thing to do.’

(21) …met storm opzij is het inhalen van een vrachtwagen een hachelijk avon-
tuur… (Het Parool, 2000-03-17, Art. 34)
‘…under sidewind conditions overtaking a truck is a risky adventure…’

(22) Kortrijk beleefde enkele hachelijke momenten tegen Brussels, dat in zijn
ondiep bad bewees zijn vierde plaats in de play-offs waard te zijn. (Het
Laatste Nieuws, 2001-05-14, Art. 375)
‘Kortrijk experienced some critical moments against Brussels, who in
their shallow pool proved to be worthy of their fourth place in the play-
offs.’

(23) Kort maar krachtig staat er: “De hachelijke situatie van Palestina is
vooral een interne aangelegenheid, hoewel de bezetting en de confrontatie
met Israël er de context voor schept.” (De Standaard, 2004-10-02, Art.
162)



Collocation — 119

‘Short but powerful, it reads: “The critical situation in Palestine is
mostly an internal matter, even though the occupation and the confronta-
tion with Israel create the context for it.”’

(24) Zij toont knappe filmpjes, opgenomen vanuit de hachelijke positie van
een deltavlieger… (De Morgen, 1999-06-07, Art. 126)

‘She shows outstanding videos, taken from the hazardous position of a
hang glider…’

The model does not give us information about the relative centrality of the
three positie clusters. They result from the combination of three features, and
each cluster exhibits a different degree of membership based on how many of
these overlapping features it co-occurs with. At the same time, they have a
distinctive regional distribution. Based on this data, we might said that a pro-
totypical context of hachelijke posities ‘dangerous/critical positions’ in Flanders
is a situation in which firefighters free someone/something from them, while
this core is not present, or at least not nearly as relevant, in the Netherlandic
data. We might also say that the same situation is not typical of hachelijke
situaties ‘dangerous/critical situations’, and this therefore presents a (local)
distributional difference between two types that otherwise, at corpus level, are
near neighbours.

cluster

avontuur/noun (0.98)

bevrijd/verb (0.74)

brandweer/noun (1)

moment/noun (0.96)

onderneming/noun (0.97)

positie/noun (0.51)

situatie/noun (0.84)

zaak/noun (0.7)

NA

Figure 6.4: Cloud of hachelijk: bound5all-ppmiweight-focall. Circles are ‘dan-
gerous, risky’; triangles are ‘critical, hazardous’.
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6.2.4 Profiling

Clusters dominated by a context word may not only represent a typical context
within a sense, but also one that highlights a different dimension of such sense
than other clusters. This is not extremely frequent and requires an extra layer
of interpretation, but it is an additional explanation to some of the clustering
solutions.

One example is given by the ‘substance’ meaning of stof, represented as
circles in Figure 6.5. Within this sense, we tend to find clusters dominated by
gevaarlijk ‘dangerous’, schadelijk ‘harmful’ (which also attracts kankerwekkend
‘carcinogenic’) and giftig ‘poisonous’ (which often attracts chemisch ‘chemical’).
These dominant context words are nearest neighbours at type-level, and the
clusters they govern belong to the same branch in the hdbscan hierarchy.

However, we can find additional information, among the context words that
co-occur with them, which suggests that frequency is not the only responsible
for their separated clusters. Concretely, the tokens in the cluster dominated
by schadelijk ‘harmful’ tend to focus on the environment and composition of
substances, as indicated by the co-occurrence with uitstoot ‘emissions’, lucht
‘air’, stank ‘stench’ and bevat ‘to contain’; meanwhile, those in the cluster
dominated by giftig ‘poisonous’ focus on the context of drugs or profile the
liberation of substances, with context words such as vorm ‘to form’, kom_vrij
‘to be released’ and drugs_gebruik ‘drug use’. The clusters are not distin-
guished by their meaning as it would be coded in a dictionary entry, but by
semantic dimensions that are highlighted in some contexts and hidden in oth-
ers, but always latent. This effect of the less frequent context words is one
of the consequences of less restrictive models: at some levels of analysis, one
word (gevaarlijk ‘dangerous’, schadelijk ‘harmful’…) might be enough to dis-
ambiguate the target, but this extra information enriches our understanding
of how the words are actually used. It is also contextualized information: not
just about how stof ‘substance’ is used, but how it is used when in combination
with certain frequent collocates.

6.3 Lexically instantiated colligation

Even without relying on part-of-speech tags or dependency relationships as
features for our models, we can obtain grammatical information from lexical
collocates. For example, the passive auxiliary word indicates passive construc-
tions, as well as the somewhat less frequent preposition door, which indicates
an explicit agent, much like by in English. Other constructions might also be
indicated by key function words, such as om te ‘in order to’, dat ‘that’ for
relative clauses, dan ‘than’ for comparatives, and prepositions. The patterns
that emerge from clusters with lexically instantiated colligation may cross the
boundaries of dictionary senses — resulting in heterogeneous clusters — match
senses, or indicate a prototypical configuration within a sense. The following
subsections explore examples of these different phenomena.
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cluster

ben/verb (0.39)

gevaarlijk/adj (1)

giftig/adj (1)

kleur/noun (0.13)

schadelijk/adj (0.91)

verboden/adj (0.43)

waai_op/verb (0.97)

NA

Figure 6.5: Cloud of stof : bound5lex-ppmiselection-focall. Within the first
homonym, circles are ‘substance’; triangles, ‘fabric’; filled squares, ‘topic, ma-
terial’. For the second, crosses are literal ‘dust’ and crossed square, idiomatic
expressions.

6.3.1 Heterogeneous clusters
The verb herstructureren ‘to restructure’ was annotated with three sense tags
emerging from a combination of specialization, i.e. whether it’s specifically ap-
plied to companies, and argument structure, distinguishing between transitive
and intransitive herstructureren. The intransitive sense is always specific —
companies restructure, undergo a process of restructure.

Models are typically not very successful at disentangling these three senses,
or any one of them, for that matter. Instead, the clusters that emerge tend to
highlight either the semantic or the syntactic dimension, disregarding the other
one. The lexical items that most frequently dominate clusters of herstructur-
eren ‘to restructure’ are the passive auxiliary word, bedrijf ‘company’, grondig
‘thorough(ly)’, and the pair of prepositions om te ‘in order to’, as illustrated
in (25) through (27).

(25) OK-score deelt bedrijven op in tien klassen; klasse 1 blaakt van gezond-
heid, klasse 10 is op sterven na dood, ofwel, staat op de rand van fail-
lissement en moet grondig worden geherstructureerd. (Het Parool,
2003-04-16, Art. 69)
‘The OK-score divides companies into ten classes: class 1 is brimming
with health, class 10 is as good as dead, or rather, stands on the edge of
bankruptcy and must be thoroughly restructured.’
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(26) Ze herstructureerden het bedrijf en loodsten het de internationale
groep Taylor Nelson Sofres (TNS) binnen. (De Standaard, 2004-01-06,
Art. 59)
‘They restructured the company and steered it towards the Taylor Nel-
son Sofres (TNS) international group.’

(27) Uiteindelijk is dat de regering, want toen de crisis uitbrak nam de overheid
een belang in de banken om ze te herstructureren en uiteindelijk weer
te verkopen. (NRC Handelsblad, 2000-11-07, Art. 11)
‘In the end that is the government, because when the crisis hit the au-
thorities took an interest in the banks in order to restructure them and
eventually sell them again.’

The two nouns never co-occur, and only occasionally co-occur with word
or om te, which themselves co-occur a few times. Both grondig ‘thorough(ly)’
and bedrijf ‘company’ are good cues for the company-specific senses, but may
occur with either transitive or intransitive constructions. In contrast, word is
a good cue for transitive (specifically, passive) constructions, but may occur
with either the company-specific or the general sense. Finally, om te may be
attested in either of the three senses. The stark separation of the clusters in
Figure 6.6 would seem to suggest opposite poles, but that is not the case at
the semantic level. In fact, unlike Figures 6.3 or 6.4, dominated by Cumulus
and Stratocumulus clouds, the clusters are merely slightly denser areas in a
rather uniform, noisy mass of tokens — the green cloud is a Stratocumulus and
the other two are Cirrus clouds — and would be much harder for the naked
human eye to capture without hdbscan input. Instead, each cluster indicates
a pole of contextual behaviour which itself may code a semantic dimension, in
the case of the bedrijf ‘company’ cluster, or a syntactic one, as in the lexically
instantiated colligation clusters.

6.3.2 Dictionary clouds
While a rare thing, we might be able to find a cluster dominated by a gram-
matical pattern that matches a dictionary sense. One clear case is the reflexive
sense of herhalen ‘to repeat’, characterized by its co-occurrence with zich ‘itself’
in BOW models without part-of-speech filters (all) and in REL models, especially
if PPMIweight is applied too.2 In the model shown in Figure 6.7, it is the clear-
est cluster, the red Stratocumulus of squares at the bottom. Looking closely,
we can see that it is made of two halves: a small one on the left, in which
the tokens also co-occur with geschiedenis ‘history’, and a bigger one on the
right, where they do not. This particular model is very restrictive: it normally
captures only one or two context words per token, which is all that we need to
capture this particular sense.

We expected this kind of output in other lemmas with purely reflexive senses
as well, but it is not easy to achieve. In the case of diskwalificeren ‘to disqual-
ify’, the very infrequent reflexive sense is typically (but not always) absorbed

2PATH models also capture zich ‘itself’, but somehow don’t build clusters around it.
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cluster

bedrijf/noun (0.77)

te/comp (0.63)

word/verb (0.54)

NA

Figure 6.6: Cloud of herstructureren: bound3all-ppmiselection-focall. Cir-
cles indicate the transitive, general sense; triangles, the transitive companies-
specific sense, and squares, the intransitive (companies-specific) sense.

cluster

aflevering/noun (0.38)

gisteren/adv (0.48)

hij/pron (0.56)

ik/pron (0.4)

woord/noun (0.75)

zich/pron (0.95)

NA

Figure 6.7: Cloud of herhalen: rel1-ppmiselection-focall. Circles are ‘to do
again’; triangles, ‘to say again’; squares, ‘(reflexive) to happen again’, and
crosses, ‘to broadcast again’.
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within the transitive sense that matches it semantically, i.e. the non sports-
related sense. Alternatively, a lexically instantiated colligation may prefer a
certain sense without exhausting its attestations: in that case, it represents a
prototypical context, as shown in the following section.

6.3.3 (Proto)typical contexts
The verb herinneren has two main senses defined by well defined construc-
tions: either an intransitive construction co-occurring with the preposition
aan, meaning ‘to remind’, or a reflexive construction meaning ‘to remember’;
a third, transitive sense is also attested but very infrequently. This lemma
is sometimes rendered as three equally sized Stratocumulus clouds, as shown
in Figure 6.8: the orange cluster is characterized by the preposition aan (see
(28)), the green one by the subject and reflexive first person pronouns ik and
me (see (29)), and the yellow one by the third person reflexive pronoun zich
(see (30)). A smaller group of tokens co-occurring with eraan, a compound of
the particle er and aan (see example (31), where it works as a placeholder to
connects the preposition to a subordinate clause), may form its own Cumulus
cloud, like the light blue one in Figure 6.8, or be absorbed by one of the larger
ones.

(28) Vinocur herinnert aan een tekening van Plantu in L’Express. (Het Pa-
rool, 2002-05-18, Art. 101)
‘Vinocur reminds [the spectator] of a drawing by Plantu in L’Express.’

(29) Ik herinner me een concert waarop hij hevig gesticulerend applaus in
ontvangst kwam nemen. (Het Parool, 2003-11-14, Art. 79)
‘I remember a concert in which he received a round of overwhelming
applause.’

(30) ”Het was die dag bloedheet”, herinnert de atlete uit Sint-Andries zich
nog levendig. (Het Nieuwsblad, 2001-08-08, Art. 192)
‘”It was scorching hot that day”, remembers the athlete from Sint-
Andries vividly.’

(31) In zijn voorwoord herinnert Manara eraan dat deze meisjes in hun tijd
vaak met toegeknepen oogjes werden aanschouwd. (De Morgen, 2001-11-
10, Art. 40)
‘In his preface Manara reminds [the reader] that back in their time these
girls were often looked at with squinted eyes.’

As the shape coding in the plot indicates, the clusters are semantically
homogeneous3, because these function words are perfect cues for the senses.
The rest of the co-occurring context words do not make a difference: they are
not strong enough, in the face of these pronouns and prepositions, to originate

3With the exception of three tokens in the first-person cluster also co-occurring with aan,
and one instantiating ik zal herinnerd worden als ‘I will be remembered as’.
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further salient structure. Nonetheless, both the aan and eraan clusters on one
side, and the pronoun-based clusters on the other, belong to the same sense.
Thus, what these lexically instantiated colligation clusters represent is a typical
or salient pattern within each sense.

cluster

aan/prep (0.93)

eraan/pp (0.95)

ik/pron (0.95)

zich/pron (0.99)

NA

Figure 6.8: Cloud of herinneren: bound10all-ppmiweight-5000nav. Circles
indicate ‘to remind’ (with aan); triangles, ‘(reflexive) to remember’, and (the
very few) squares, ‘(trans.) to remember’.

6.3.4 Profiling
Like clusters defined by collocations, clusters defined by lexically instantiated
colligations can also represent a typical context that highlights a specific di-
mension of the sense of the target. One such case is found in the ‘horde’ sense
of horde, whose most salient collocates in this corpus are toerist ‘tourist’ and
journalist. The two collocates are quite similar to each other at type-level, but
the rest of the context words in their clusters point towards a different dimen-
sion of the ‘horde’ sense: hordes of journalists, photographers and fans (other
nouns present in the same cluster) will surround and follow celebrities, as sug-
gested by the co-occurrence of omring ‘to surround’, wacht_op ‘to wait’ and
achtervolg ‘to chase’, among others. In contrast, hordes of tourists will instead
flood and move around in the city, with words such as stroom_toe ‘to flood’
and stad ‘city’. As it stands, the situation is equivalent to the case of stof ‘sub-
stance’ described above. However, in the models that capture function words
like the one shown in Figure 6.9, the profiling in these clusters is strength-
ened by lexically instantiated colligations. The journalist cluster is dominated
by the preposition door, which signals explicit agents in passive constructions;
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the passive auxiliary word also occurs, albeit less frequently. Meanwhile, the
toerist ‘tourist’ cluster includes tokens co-occurring with naar ‘towards’. The
prepositions are coherent with the dimensions of ‘horde’ highlighted by each of
the clusters, i.e. aggressivity and flow respectively. Interestingly, they don’t co-
occur with all the tokens that also co-occur with journalist and toerist ‘tourist’
respectively, but the nouns and prepositions complement each other instead.

cluster

door/prep (0.7)

eerste/num (0.67)

meter/noun (0.69)

moet/verb (0.45)

op/prep (0.5)

toerist/noun (0.71)

NA

Figure 6.9: Cloud of horde: bound5all-ppmiselection-focall. Within the
‘horde’ homonym, circles indicate human members and triangles, nonhuman
members; within the ‘hurdle’ homonym, squares show the literal sense and
crosses, the metaphorical one.

6.4 Semantic preference

Clusters that are not clearly dominated by one context word or group of co-
occurring context words, be they lexical collocations or lexically instantiated
colligations, may still be the result of coherent distributional and semantic
patterns. Representing first-order context words with their type-level vectors
allows infrequent near neighbours to join forces and approximate the effect of
one context word with their cumulative frequency. These context words may
occur one to four times in the sample, that is, in about one every hundred
occurrences of the target, but together with other similar context words, they
form a visible pattern.
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6.4.1 Heterogeneous clusters
Just like we can have clusters dominated by one context word that is not
characteristic of one sense, we can have clusters dominated by multiple similar
context words that are not characteristic of any sense. This is the case of names
of colours and clothing terms4 co-occurring with grijs ‘gray’, which in a model
like the one shown in Figure 6.10 also includes haar ‘hair’. As a result, grijs
‘gray’ tokens referring to concrete grey objects in general and, specifically, to
grey/white hair, form the light blue Stratocumulus cloud on the top right of
the figure. Note that, visually, the two senses occupy opposite halves of this
cluster: the haar ‘hair’ tokens (squares) occupy their own space, but the type-
level similarity of the context word to the names of colours and clothing terms
makes them indistinguishable to hdbscan.

cluster

alles/noun (0.46)

en/vg (0.4)

gebied/noun (0.59)

gevel/noun (0.22)

Mercedes/name (0.32)

NA

Figure 6.10: Cloud of grijs: bound5all-ppmino-focall. Circles represent the
literal sense; triangles, ‘overcast’; squares and crosses, to applications to hair
and white-haired people respectively; crossed squares, ‘boring’, and asterisks,
‘half legal’.

A second example is the set of juridical terms in herroepen, which means ‘to
recant’ when the object is a statement or opinion, and ‘to annul, to void’ when
it is a law or decision. In the QLVLNewsCorpus, it is often used in a broad
legal or juridical context. However, one of the most frequent collocates of her-
roepen within this field is uitspraak, which can either mean ‘verdict’, therefore
invoking the ‘to void’ sense like in (32), or ‘statement’, to which ‘to recant’
applies, like in (33). Unfortunately, the broader context is not clear enough for

4A similar group of context words is responsible for joining the ‘fabric’ and ‘lit. dust’
senses of stof, even across homonyms.
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the models to disambiguate the appropriate meaning of uitspraak herroepen in
each instance. At the type-level, uitspraak is very close to a number of context
words of the juridical field, namely rechtbank ‘court’, vonnis ‘sentence’, vero-
ordeling ‘conviction’, etc. Together, they constitute the semantic preference of
the light blue Stratocumulus cloud in Figure 6.11, which, similar to the grijs
haar ‘gray/white hair’ situation above, is visually split between the tokens co-
occurring with uitspraak and those co-occurring with the rest of the juridical
terms.

(32) Het beroepscomité herriep gisteren de uitspraak van de licentiecommissie
en besliste om KV Mechelen toch zijn licentie te geven. (De Standaard,
2002-05-04, Art. 95)
‘Yesterday the court of appeal voided the verdict from the licencing com-
mittee and instead decided to grant KV Mechelen a licence.’

(33) Onder druk van Commissievoorzitter Prodi heeft Nielson verklaard dat
hij verkeerd is geïnterpreteerd, maar hij heeft zijn uitspraak niet her-
roepen. (NRC Handelsblad, 2001-10-04, Art. 79)
‘Under pressure from committee chairman Prodi, Nielson declared that
he had been misinterpreted, but he did not recant his statement.’

The result is understandable and interpretable: the context words co-
occurring with the tokens in the light blue cluster belong to a semantically
coherent set and are distributional near neighbours. The problem is that, in
the sample, the sense of uitspraak that occurs the most is not the juridical one
like in (32) but ‘statement’ like in (33), therefore representing a different sense
of herroepen than its juridical siblings. In some models, the two groups are
split as different clusters, but in those like the one shown in Figure 6.11, they
form a heterogeneous cluster generated by semantic preference.

Interestingly, verklaring ‘statement’ and bekentenis ‘confession’ could be
considered part of the same semantic field as well, in broad terms. However,
they belong to a different frame within the same field of legal action — a
different stage of the process — and, correspondingly, their type-level vectors
are different and they tend to represent distinct, homogeneous clusters (the
green Cumulus in the figure).

6.4.2 Dictionary clusters
A few senses can be completely clustered by groups of similar context words.
One of these cases was already discussed in the context of schaal ‘scale’ tokens:
in models that exclude Richter because of its part-of-speech tag name, the
tokens co-occurring with it can alternatively be grouped by kracht ‘power’,
aardbeving ‘earthquake’ and related context words. As in the case of Richter
as dominating collocate, the semantic field of earthquakes is not part of the
definition of the ‘range’ sense of schaal, but the dominating semantic pattern
within the corpus under study.

Another example is found in haken, where the ‘to make someone trip’ sense
is characterized by a variety of football-related terms (strafschop ‘penalty kick’,
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cluster

beslissing/noun (0.9)

uitspraak/noun (0.58)

verklaring/noun (0.73)

word/verb (0.67)

NA

Figure 6.11: Cloud of herroepen: bound3all-ppmiselection-focall. Circles rep-
resent ‘to void’; triangles, ‘to recant’.

penalty, scheidsrechter ‘referee’, etc.), and the very infrequent ‘crochet’ sense,
by brei ‘to knit’, naai ‘to sew’, hobby and similar words. They are represented
as a Stratocumulus of dark blue squares and a Cirrus of light blue crossed
squares in Figure 6.12 respectively. As indicated by the name of the dark blue
cluster, the passive auxiliary word is also characteristic of the ‘to make someone
trip’ cluster and very rarely occurs outside of it: here, lexically instantiated
colligation is working together with the clear semantic preference of the cloud.

6.4.3 (Proto)typical contexts
There are several examples of clusters defined by semantically similar infre-
quent context words representing typical contexts of a sense. In Figure 6.10,
for example, the dark blue Stratocumulus is represented by cars, mostly in-
dicated by Mercedes and Opel, next to other brands. In the case of lemmas
like dof ‘dull’, some models might dedicate different clusters to specific collo-
cates, such as klink ‘to sound’, knal ‘bang’, klap ‘clap’ and dreun ‘pounding’,
while others group them together in one large cluster defined by a semantic
preference indicative of a sense, e.g. sounds.

A typical semantic group attested in different lemmas is culinary: found
with schaal ‘dish’ — the blue Cumulus of crosses in Figure 6.10 — and with
heet ‘hot’, the red Stratocumulus of mostly circles in Figure 6.13. In the case of
heet ‘hot’, almost all the tokens co-occurring in this cluster refer to literally hot
foods and drinks, although the full expression might be idiomatic, like in (34),
and only a few of them belong to the much less frequent sense ‘spicy’. In other
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cluster

blijf/verb (0.7)

brei/verb (0.8)

fietser/noun (0.45)

muur/noun (0.67)

word/verb (0.66)

NA

Figure 6.12: Cloud of haken: bound3all-ppmiselection-focall. Circles and tri-
angles represent the transitive and intransitive literal ‘to hook’; crosses repre-
sent the figurative (intransitive) sense; filled squares represent ‘to make some-
one trip’; crossed squares, ‘to corchet’, and asterisks, ‘to strive for’ (with naar).

models, the tokens co-occurring with soep ‘soup’ and/or those co-occurring
with water tokens might form separate clusters.

(34) Hoogstwaarschijnlijk zal Poetin Ruslands afgeknapte westerse partners
discreet laten weten dat zodra hij eenmaal in het Kremlin zit, de soep
minder heet gegeten zal worden. (De Volkskrant, 1999-12-21, Art. 22)
‘Most probably Putin will discretely let Russia’s former western allies
know that as soon as he is in the Kremlin, things will look up (lit. ‘the
soep will be eaten less hot’).’

In addition, aardappel ‘potato’ is at type-level a near neighbour of the con-
text words in this semantic group, but it still tends to form its own cluster,
like the orange Cumulus in the figure. This is due both to its frequency and
the distinctiveness of its larger cotext, e.g. the co-occurrence with schuif_door
‘to pass on’. Like other expressions annotated with the ‘hot to the touch’ sense
(circles in the figure), including hete hangijzer ‘hot irons’ in yellow and hete
adem (in de nek) ‘hot breath (on the neck)’ in light blue, hete aardappel ‘hot
potato’ is used metaphorically. In the strict combination of adjective and noun,
the meaning of heet proper is still ‘hot to the touch’: it is the combination itself
that is then metaphorized (for a discussion see Geeraerts 2003). The context
words themselves are frequent and distinctive enough to generate clusters of
their own with the tokens that co-occur with them, but aardappel ‘potato’
tends to stick close to the culinary cluster or even merge with it.
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cluster

aardappel/noun (0.92)

adem/noun (0.86)

ben/verb (0.33)

hang_ijzer/noun (0.98)

voet/noun (0.84)

ze/pron (0.31)

zomer/noun (0.6)

NA

Figure 6.13: Cloud of heet: bound5all-ppmino-focall. Among the literal senses,
cricles, filled triangles and filled diamonds represent tactile, weather and body
senses; empty squares and triangles represent ‘spicy’ and ‘attractive’ respec-
tively; crosses represent ‘conflictive’, and asterisks, ‘popular or new’.

6.4.4 Profiling
The adjective geldig ‘valid’ can relate to a legal or regulated acceptability, which
is its most frequent sense in the sample, or may have a broader application,
to entities like redenering ‘reasoning’. By definition, and like for most of the
lemmas studied here, each sense matches some form of semantic preference. In
addition, models of this lemma reveal semantic preference patterns within the
frequent, specific sense, each of which, in turns, highlights a different dimension
of this sense. These patterns may be only identified as areas in the t-sne plots
or, in models like the one shown in Figure 6.14, as clouds.

The green Stratocumulus is characterized by context words such as rijbewijs
‘driving license’, paspoort ‘passport’ and other forms of identification, as well
as verbs like leg_voor ‘to present’, heb ‘to have’ and bezit ‘to possess’. In other
words, it represents contexts in which someone has to demonstrate possession
of a valid identification document, as shown in (35). The light blue Cirrus and
the yellow Cumulus, on the other hand, co-occur with other kinds of documents
(ticket, abonnement ‘subscription’), euro, the preposition tot ‘until’, and times
(maand ‘month’, jaar ‘year’, numbers, etc.). In this case, the price of the
documents and the duration of their validity are more salient, as illustrated in
(36).

(35) Aan de incheckbalie kon de Somaliër echter geen geldige papieren voor-
leggen. (Het Laatste Nieuws, 2001-08-24, Art. 64)
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‘But the Somali could not show any valid papers at the check-in desk.’

(36) Klanten van Kunst In Huis zijn bovendien zeker van variatie: wie lid
is, kan elke maand een ander werk uitkiezen, het abonnement blijft een
leven lang geldig en de maandelijkse huurprijs van 250 frank is ook niet
bepaald hoog te noemen. (De Standaard, 1999-05-29, Art. 41)
‘Moreover, customers of Kunst In Huis (lit. ‘Art At Home’) are guar-
anteed variation: members can choose a different work each month; the
subscription remains valid for a lifetime and the monthly fee of 250 franks
is not particularly high either.’

cluster

ben/verb (0.41)

euro/noun (0.5)

heb/verb (0.36)

maart/noun (0.36)

referendum/noun (0.48)

NA

Figure 6.14: Cloud of geldig: bound10lex-ppmiselection-focall. Circles repre-
sent the specific sense and triangles, the general one.

6.5 Near-open choice
The clouds described up to now in this chapter can be easily interpreted in
terms of dominating context words or semantic domains. We would expect
this always to be the case: if hdbscan identifies a cluster, there must be
structure; if there is structure, there must be an underlying pattern; if there is
an underlying pattern, it can be meaningfully interpreted. Unfortunately, this
is not always the case. hdbscan clusters can also be formed in opposition: as
we saw before in the case of the Cumulonimbus clouds, i.e. the massive clusters
covering at least half the sampled tokens, the grouping criterion might be a
negative definition. There is a strong pattern, and everything else that does not
conform to it is dumped together. In other situations, whatever structure the
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hdbscan picks up on is very faint, compared to the Cumulus skies we may find
in heffen and hachelijk (see Section 6.2.3). At present, we do not understand
the relationship between hdbscan and token-level distributional models well
enough to make sense of why these less interpretable clusters emerge and how
meaningful they really are.

One of the possible interpretations of these kinds of clusters, from the lin-
guistic point of view, is that some patterns are closer to the “open choice”
side of the spectrum, while the cases discussed in Section 6.2 are closer to the
“idiom” side. The open-choice and idiom principle were not really presented as
poles of a continuum, but they do help as interpretative tool to make sense of
the variation in cloud shapes within a lemma and across lemmas. We cannot
split the data studied here between models that follow the idiom principle and
those that don’t, because the degree to which the distributional behaviour of
each lemma can be explained by the idiom principle is different. When we
generate a list of collocations for an item, we see the most relevant patterns;
when we read sorted concordances, we focus on the similarities that stand out;
with token-level distributional models, instead, we can see how strong or weak
these patterns are.

In this section we will look at examples of clusters that cannot be interpreted
in terms of dominating context words or semantic domains. Most of these result
in heterogeneous clusters, especially Cumulonimbus clouds, but they can also,
occasionally, bring together all the tokens of senses with certain characteristics.
What I have not found is cases of near-open choice clusters that represent
semantically homogeneous prototypical contexts.

6.5.1 Heterogeneous clusters
The most common situation in clusters that are not explained by a dominant
context word or semantic preference, especially when they are Cumulonimbus
clouds, is that they are semantically heterogeneous. These massive clouds occur
in models where a small number of tokens that are very similar to each other —
typically idiomatic expressions, but not necessarily — stand out as a cluster,
and everything else either belongs to the same massive cluster or is noise. In
many cases there is barely any noise left, while in others hdbscan does seem to
find a difference between the many, varied tokens in the Cumulonimbus clouds
and those that are left as noise.

One such example is the Cumulonimbus cloud of blik in Figure 6.15, shown
in orange. The small Cumulus clouds to either side are represented by the
co-occurrence of werp ‘to throw’ and richt ‘to aim’, which indicate prototypical
instances of blik ‘gaze’ (see (37) and (38)). Very few tokens are excluded as
noise — the patterns they form seem to be too different from the clustered
tokens to merge with them, but too infrequent to qualify as a cluster on their
own.

(37) Op zaterdag 27 april zwaait de lokale politie van de zone Kortrijk-Kuurne-
Lendelede de deuren wijd open voor al wie een blik wil werpen achter de
schermen van het politiewerk. (Het Laatste Nieuws, 2002-04-23, Art. 54)
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‘On Saturday 27 April the local police of the Kortrijk-Kuurne-Lendelede
zone opens their doors wide for all those who want to have a look behind
the scenes of police work.’

(38) Maar wat is goed genoeg, zo lijkt Staelens zich af te vragen, haar blik
strak naar beneden gericht. (De Volkskrant, 2003-09-27, Art. 170)
‘But what is good enough, Staelens seems to wonder, her gaze looking
straight down.’

The orange cluster may seem homogeneous because of the predominance
of the circles, but that is simply an effect of the large frequency of the ‘gaze’
sense, which can also occur in contexts like (39). The other sense of the ‘gaze’
homonym, ‘perspective’, as shown in (40), and of the ‘tin’ homonym (see (41)),
are also part of this massive heterogeneous cluster. If anything brings these
tokens together, other than the fact that they normally do not match the
patterns in (37) and (38), is that they typically co-occur with een ‘a, an’, de
‘the’, met ‘with’, op ‘on’, and other frequent prepositions, or more than one at
the same time. These frequent, partially overlapping, and not so meaningful
patterns bring all those tokens together and, to a degree, set them apart.

(39) Totdat Walsh met een droevige blik in zijn ogen vertelt dat hij het moeil-
ijk heeft. (Het Parool, 2004-03-02, Art. 121)
‘Until Walsh, with a sad look in his eyes, says that he’s having a hard
time.’

(40) IMF enWereldbank liggen al jaren onder vuur wegens hun vermeend eenz-
ijdige blik op de ontwikkelingsproblemen van Afrika. (Algemeen Dagblad,
2001-02-20, Art. 129)
‘The IMF and the World Bank have been under attack for years because
of their alledgedly unilateral view on the delevopment issues in Africa.’

(41) Zijn vader had een fabriek waar voedsel in blik werd gemaakt. (NRC
Handelsblad, 2003-12-05, Art. 120)
‘His father had a factory where canned food (lit. ‘food in tin cans’) was
made.’

6.5.2 Dictionary clusters
It might seem pointless to look for meaning in clusters that do not respond to
either dominating context words or semantically similar context words, but for
some lemmas, it might make sense. Such is the case of the model of huldigen
shown in Figure 6.16.

Like with other transitive verbs, the senses of this lemma are characterized
by the kind of direct objects they can take. When the direct object of huldigen
is an idea or opinion, it means ‘to hold, to believe’: in our sample, typical cases
include principe ‘principle’, standpunt ‘point of view’ and opvatting ‘opinion’
(see examples (42) through (44)). The three of them are near neighbours at
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cluster

een/det (0.63)

richt/verb (0.93)

werp/verb (1)

NA

Figure 6.15: Cloud of blik: bound5all-ppmiweight-5000nav. For the first
homonym, circles represent ‘gaze’ and triangles, ‘view, perspective’; for the
second, squares represent ‘tin’ and crosses, ‘made of tin’ or ‘canned food’.

type level, but frequent enough to lead their own Cumulus or Stratocumulus
clouds in most models, like in Figure 6.16. In other contexts, huldigen means
‘to honour, to pay homage’, and the role of patient is normally filled by human
beings (see examples (45) and (46)). In practice, the variety of nouns that
can take this place is much larger than for ‘to believe’, and as a result, the
clusters that cover ‘to honour’ are less compact and defined than the clusters
representing the other sense. And yet, the Cumulonimbus shown in yellow
in Figure 6.16 almost perfectly represents the ‘to honour’ sense. How is that
possible?

(42) Jacques: “Voor het eerst huldigen we het principe dat de vervuiler be-
taalt.” (De Morgen, 1999-03-10, Art. 12)
‘Jacques: “For the first time we uphold the principle that polluters must
pay.”’

(43) De regering in Washington huldigt het standpunt dat volgens
Amerikaans recht de vader beslist over het domicilie van zijn min-
derjarige zoon. (NRC Handelsblad, 2000-04-03, Art. 97)
‘The government in Washington holds the view that according to Amer-
ican law fathers decide on the primary residence of their underage sons.’

(44) …de objectieve stand van zaken in de buitenwereld zou kunnen weer-
spiegelen. Rorty huldigde voortaan de opvatting dat waarheid synoniem
is voor wat goed is voor ons. (De Standaard, 2003-01-09, Art. 93)
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‘…would reflect the objective state of affairs in the outside world. Ever
since Rorty has held the opinion that the truth is a synonym for what
is good for us.’

(45) ”Elk jaar huldigen wij onze kampioenen en sinds enkele jaren richten
we een jeugdkampioenschap in”, zegt voorzitter Eddy Vermoortele. (Het
Laatste Nieuws, 2003-04-15, Art. 121)
‘”Every year we honour our champions and for a few years we’ve been
organizing a youth championship”, says chairman Eddy Vermoortele.’

(46) Langs de versierde straten zijn we naar de kerk gereden en na de
plechtigheid hebben we Karel nog gehuldigd in feestzaal Santro. Hij is
nog een heel kranige man. (Het Laatste Nieuws, 2003-07-18, Art. 256)
‘We drove through the ornate streets towards the church and after the
ceremony we honoured Karel at the party hall Santro. He is still a spry
man.’

cluster

opvatting/noun (0.78)

principe/noun (0.87)

standpunt/noun (1)

word/verb (0.65)

NA

Figure 6.16: Cloud of huldigen: nobound3lex-ppmiselection-focall. Circles
represent ‘to believe, to hold (an opinion)’; triangles, ‘to honour’.

One of the factors playing a role in the layout of this model is that the co-
occurrences with principe ‘principle’, standpunt ‘point of view’ and opvatting
‘opinion’ exhaust about half the attestation of the ‘to believe’ sense. The rest
of the tokens are too varied and typically fall into noise. The variety within
the ‘to honour’ sense cannot compete against the stark differences between
these clusters and everything else. Nonetheless, there is some form of structure
within the sense that differentiates it from the equally varied remaining tokens
of ‘to believe’, and that is a family resemblance structure.
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No single semantic field is enough to cover the variety of contexts in which
huldigen ‘to honour’ occurs in our sample: instead, we find different aspects and
variations of the prototypical situation of ceremonies organized by sports- and
city organizations in public places, in honour of successful athletes. In order to
get a better picture of the syntagmatic relationships between the context words
within the cluster, we can represent them in a network, show in Figure 6.17.
Each node represents one of the 150 most frequent context words co-occurring
with tokens from the yellow cloud in Figure 6.16, and it is connected to each
of the context words with which it co-occurs in a token of that cluster. The
thickness of the edges represents the frequency with which the context words
co-occur within the sample; the size of the nodes summarizes that frequency,
and the size of the label roughly represents the frequency of the context word
among the tokens in the cluster.

The most frequent context word is the passive auxiliary word: it is the only
context word captured in the tokens of the dense core on the upper right corner
of the cloud, and co-occurs with about half the tokens of this cluster. A number
of different, less frequent context words partially co-occur with it, such as
kampioen ‘champion’, stadhuis ‘city hall’ and sport_raad ‘sports council’. They
subsequently generate their own productive branches in the family resemblance
network. Crucially, this shows how we might have a token that co-occurs with
verdienstelijk ‘deserving’ and sport_raad ‘sports council’ and one that co-occurs
with gemeente_bestuur ‘municipal administration’ and officieel ‘official’, both
as part of the same cluster.

Semantically and distributionally, the context words plotted in this
network belong to different, loosely related fields, such as sports (kampioen
‘champion’, winnaar ‘winner’, sport_raad ‘sports council’), town adminis-
tration (stad_bestuur, gemeente_bestuur ‘city administration’) and temporal
expressions (jaar ‘year’, weekend). The predominance of the passive auxiliary
word — lexically instantiated colligation — the presence of unified semantic
fields — multiple semantic preferences — and the family resemblance among
tokens, resulting from an intricate network of co-occurrences, work together
to model the subtle, complex semantic structure of huldigen ‘to honour’.

6.6 Summary
Different types of clouds offer us different kinds of information. The ideal re-
sult of clusters that equal dictionary senses is only rarely found, and instead
we typically find collocations that represent (proto)typical contexts within a
sense. Next to this typical result, we encounter a variety of phenomena com-
bining syntagmatic and paradigmatic aspects. Along with collocations, we
find colligation and semantic preference as motors behind most of the clusters,
but also a number of cases where no clear distributional pattern can be found.
These phenomena correlate decently with the types of clouds discussed in Chap-
ter 5: collocations with Cumulus clouds, lexically instantiated colligation with
Stratocumulus clouds, semantic preference with all but Cumulonimbus, and
near-open choice with Cumulonimbus. These are, of course, not deterministic
mappings, but general tendencies. At the paradigmatic or semantic level, next
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Figure 6.17: Network of context words of the huldigen ‘to honour’ cluster.

to clusters that represent typical contexts, we find heterogeneous clusters and
some that match senses completely. In addition, typical contexts may include
richer information regarding different semantic dimensions of a sense that are
highlighted in certain contexts, i.e. that are prototypical of that contextual
pattern.

In this chapter we have seen the different combinations of these syntagmatic
and paradigmatic phenomena, and the shapes they can take in the models of
different lemmas. Clouds do not necessarily match senses, but may offer us
other types of information, depending on the distributional properties of the
lemma and the dimensions that are most relevant in its semasiological structure.
In the following chapter we will look at the (lack of) relationship between the
information we obtain and parameter settings.



Chapter 7

No sky is the best sky

There is no magic trick to extract neat, semantically homogeneous clouds from
the wild sea of corpus attestations. As we have seen in Chapter 5, the clouds
can take a number of different shapes, depending on the variability of the
context words that co-occur with the target, their frequency and their diversity.
Chapter 6 further shows that these clusters may have various interpretations,
both from a syntagmatic perspective and from a paradigmatic perspective,
resulting in a diverse net of phenomena. It also explores the role of the similarity
and co-occurrence between the context words. In this chapter, we will look at
the relationship between these results and the parameter settings that produce
them.

In consonance to the previous analyses, there is no golden law to be drawn
from here. There is no set of parameter settings that reliably returns the best
output: not for specific parts of speech, nor for specific semantic phenomena.
This variability will be illustrated in two sections: in Section 7.1 I will compare
the medoids of hoop ‘hope/heap’ and stof ‘substance/dust…’ that best model
homonymy in each lemma, while Section 7.2 will look at the shape that the
same parameter configuration takes in many different models.

7.1 A pile of dust
As mentioned in Chapter 4, we have modelled 7 homonymous and polysemous
nouns, with the intention of studying the relationship between parameter set-
tings and granularity of meaning. We expected certain parameters to be better
at modelling differences between homonyms and others to be able to capture, at
least in some cases, the more subtle differences between senses of a homonym.
However, even though homonymy should be relatively easy to model1, the re-
sults are not so straightforward. As an example, let’s look at the medoids of
hoop ‘hope, heap’ and stof ‘substance, dust…’ that most successfully model the
manual annotation.

Figure 7.1 shows the best medoid of each of the lemmas, in terms of semantic
1See for example in Schütze (1998); Yarowsky (1995).
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homogeneity of the clusters. By mapping the sense tags to colours, we can see
that each of them has a rather well defined, homogeneous area in the t-sne
plot. It should be noted, however, that the areas are relatively uniform, and
we would be hard pressed to find such a clear structure without any colour-
coding. In fact, hdbscan only highlights the most salient areas, covering, for
example, only the center of the light blue island in the left plot.

sense 1 2 3

hoop

sense 1 2 3 4 6

stof

Figure 7.1: Best medoids of hoop (pathweight-ppmino-focall) and stof
(bound5lex-ppmiselection-focall).

The senses plotted to the colours are coded with numbers to avoid clutter-
ing. The senses of hoop are, for the first homonym, [1] literal ‘heap, pile’ and
[2] general ‘heap, bunch’, and for the second homonym, [3] ‘hope’. The first
homonym of stof includes [1] ‘substance’, [2] ‘fabric’ and [3] ‘topic, material’,
while the second covers [4] literal ‘dust’ and [6] idiomatic ‘dust’. There is no
sense [5], originally ‘(reduced to) dust’, because it was not attested. Some
relevant examples will be given below.

The parameters that result in these models are in fact very different, al-
though their second-order configuration is equivalent: the union of all the con-
text words captured by the model are also used as second-order dimensions.
As a result, the dimensionality of the token-level vectors is quite low: 833 for
hoop and 483 for stof.

The model that works best for hoop is the only medoid that manages to
group the tokens of the ‘heap’ homonym away from the larger mass of ‘hoop’
tokens (in green), with even a neat moat in between. If we sacrifice the in-
frequent literal ‘heap’ sense (in orange), the split is indeed outstanding. This
is achieved by a PATHweight model: it uses syntactic information, selects the
context words connected up to three steps away from the target, and weights
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the contribution of each item on that distance, regardless of the precise nature
of the syntactic relationship, part-of-speech information or pmi. The syntactic
distances, i.e. the number of steps to the target in the dependency path, are
illustrated with the superscripts in examples (47) and (48).

In (47), the indefinite determiner een and the modified noun onzin ‘non-
sense’ are directly linked to the target hoop as dependent and head respectively,
so they are taken by the model and receive the highest weight. The first oc-
currence of the verb is is the head of its subject onzin ‘nonsense’, hence two
steps away of the target: it is included and receives a slightly lower weight.
The particle er, which is tagged as a modifier of is, and the second instance of
is, as head of the subordinate clause, are three steps away from the target, and
therefore obtain a low weight. The rest of the context is ignored by this model.

Example (48) offers a much more complex picture, particularly because the
link between the target hoop ‘hope’ and the verb spreek_uit ‘to express’ (split
in sprak and its particle uit), is short. As the core of the dependency tree, the
main verb opens the path to many other elements in the sentence.

(47) Er3 is2 een1 hoop onzin1, talent is3 niet iedereen gegeven. (Algemeen
Dagblad, 2001-01-27, Art. 78)
‘There is a lot of nonsense; talent is not given to everyone.’

(48) De3 trainer2 van3 FC Utrecht sprak1 verder2 de1 hoop uit2 dat1 hij3
binnenkort weer eens mag2 investeren3 van de clubleiding. (NRC Han-
delsblad, 2004-05-24, Art. 93)
‘The manager of FC Utrecht also expressed the hope that the club man-
agement would allow him to invest once again soon.’

A key point for this lemma is that hoop ‘hope’, represented by (48), is a
mass noun, and therefore tends to occur with the definite determiner de (40%
of the cases). In contrast, hoop ‘heap’, represented by (47), tends to occur
with een ‘a(n)’ (64 out of 76 occurrences). This correlation is hard to extract
with a bag-of-words model, which would either filter out function words such
as the determiners, or include all determiners, related to the target or not, thus
drowning this pattern in noise.

In contrast, the parameter settings that work best for stof are bound5lex
and PPMIselection, i.e. they capture the nouns, verbs, adjectives and adverbs
within 5 slots to each side of the target, as long as they are within the limits
of the sentence and their pmi with the target lemma is positive. In the case of
(49), for example, the model selects discussie ‘discussion’ and lever_op ‘to bring
about, to return’, in italics in the transcription. Words that might follow after
the period would be excluded by this model, as are those before film ‘movie’.
Within the window span of 5 words to each side, die ‘that’, na ‘after’, veel
‘much’ and tot ‘to’ are excluded because of the part-of-speech filter. Finally,
the nouns film ‘movie’ and afloop ‘end, conclusion’, which survive the window
size and part-of-speech filters, are excluded by the association strength filter,
since their pmi value in relation to stof is lower than 0.

(49) Dit is een perfect voorbeeld van een film die na afloop veel stof tot
discussie oplevert. (Algemeen Dagblad, 2003-12-11, Art. 58)
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‘This is a perfect example of a film that afterwards provides a lot of food
for thought (lit. ‘stuff for discussion’).’

Being generous, we can find a good representation of granularity of meaning
for hoop in Figure 7.1. In the case of stof, however, the senses are quite well
distinguished but the homonyms are not. First, most of the idiomatic ‘dust’
tokens group quite nicely in some sort of appendix to the main cloud. These
tokens, which are by definition idiomatic uses of stof, tend to be very tightly
grouped in most models. An example can be seen in (50). Notably, they also
include a few literal tokens that also co-occur with one of the defining context
words, i.e. doe ‘to make’ and waai_op ‘to lift’.

(50) Het huwelijk tussen de hervormde Maurits en de katholieke Marylene
deed de nodige stof opwaaien. (Algemeen Dagblad, 1999-12-08, Art. 3)
‘The wedding between Maurit, a Reformed Christian, and Marylene, a
Catholic, inspired a much needed debate (lit. ‘stirred up the necessary
dust’).’

The rest of the tokens seem to be organized by sense with subtle borders in
between. The most frequent sense, ‘substance’, even includes a few independent
islands on top, already discussed in Section 6.2.4.

Most interestingly, ‘fabric’ and ‘dust’, in light blue and yellow respectively,
like to go together, even though they belong to different homonyms. In fact,
hdbscan merges them together in one cluster, as we will see in Figure 7.3.
This is not entirely surprising, given that both senses tend to co-occur with
quite concrete context words, such as names for materials and colours (see for
example (51) and (52)), while the ‘substance’ sense is more chemically-oriented
and the ‘topic, material’ sense, illustrated in (49), co-occurs with the semantic
domain of communication instead.

(51) Dankzij de nieuwe vlekwerende “stay clean”-behandelingen dringen zelfs
vloeistoffen zoals olie, vruchtensap of water niet in de stof. (De Stan-
daard, 2001-01-19, Art. 6)
‘Thanks to the new stain-resistant “stay clean” treatments even liquids
such as oil, fruit juice or water do not penetrate the fabric.’

(52) Na het stof de douche. De tocht door de Hel zit er op. (De Morgen,
2003-04-15, Art. 65)
‘After the dust the shower. The trip through Hell [a cobblestone cycling
road] is over.’

This description should suffice to understand how very different parameter
configurations are necessary to model such different lemmas. The fact that both
of them are homonyms is not enough: other aspects of their structure, such as
the kind of contextual features that characterize each sense or homonym, play
a role.

What I have not shown is that other models are not as good. What would
come out from applying the parameter settings that work best for one lemma
onto the other? This we see in Figure 7.2.
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sense 1 2 3

hoop

sense 1 2 3 4 6

stof

Figure 7.2: Model of hoop with the parameters that work best for stof and
viceversa: bound5lex-ppmiselection-focall for hoop and pathweight-ppmino-
focallfor stof

Indeed, swapping the configurations returns unsatisfying results. In the case
of hoop, we see a similar picture to many other models: a plot overrun by ‘hope’,
with maybe an area with more ‘literal heap’ tokens, while the ‘general heap’
tokens, that were so nicely separated in Figure 7.1, are mixed and distributed
across one hemisphere. In the case of stof, we keep having a large ‘substance’
area in orange, an isolated blue section for the idiomatic ‘dust’ and a shy green
peninsula of ‘topic, material’ tokens, but the concrete senses, ‘fabric’ and ‘dust’,
are disperse and mixed.

Even for a fairly straightforward task as discriminating homonyms, param-
eters that succeed in one lemma fail in the other. This is unrelated to the
number or frequency of the senses. Instead, it is inextricably linked to the
particular distributional behaviour of each lemma. While stof can find collo-
cations or semantic preferences that, to various degrees, represent (parts of)
senses, the lexical contexts of hoop are too varied to generate clear clusters. On
the other hand, a syntactically informed model can identify determiners as a
relevant feature of hoop, while the same information seems less interesting in
regard to stof.
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Table 7.1: Salient parameter settings per lemma.

Only lex lex or PPMIweight No lex effect
SOC
effect

radial window no window radial window no window radial window no window

5000-
all

horde,
gekleurd,
hoopvol, haten,
helpen

staal, blik,
hemels,
gemeen, grijs

stof, dof,
geestig, heet

hoekig, geldig,
goedkoop

5000
around

hachelijk haken spot, schaal heilzaam heffen1

None hoop,
herinneren,
herstellen1,
harden1

herhalen,
diskwalificeren,
herstructureren

huldigen2 herroepen

1 Models with window size of 3 are separated, no radial structure.
2 Dependency-based models are closer to those with larger window instead of those with smaller window.
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7.2 Weather forecast gone crazy
Parameter settings do not have an equal effect across all models. Even at Level
1, where we compare models of a lemma with each other, we encounter a variety
of patterns. Table 7.1 groups all the lemmas based on the three criteria that
make the greatest difference in the organization of the Level 1 plots. The main
columns refer to effects of the first-order part-of-speech filter and the ppmi
weighting: in the first group of lemmas, lex models occupy a specific area
of the Level 1 plot; in the second they are isolated next to the PPMIweight
models (and sometimes REL as well), and in the third, no effect of the part-
of-speech setting is found. The next level of columns distinguishes the effect
of window size among the BOW models. A radial window configuration means
that models with a window of 5 lie between those with a window of 3 and those
with a window of 10. Typically, the models with smaller windows are closer
to the dependency-based models, with huldigen being an exception. Three of
these lemmas do not really exhibit a radial structure, but the models with the
smallest window tend to be isolated instead. Finally, the rows indicate an effect
of the second-order vectors: the first row gathers the lemmas with a separate
section for the 5000all second-order configuration; the second, lemmas where
models with 5000 vectors simply have a tendency to wrap around the rest of the
models (like the wings of a beetle), and the third row is used for the lemmas
where second-order parameters have no special effect on the organization of
their models. Models with 5000all second-order configuration are consistently
messy, and tend to make the type-level distances between all pairs of context
words huge.

As we can see in the table, these patterns are not related to the part-of-
speech of the target or the semantic phenomena we expect in it. This variability
and the different ranges of distances between the models are the reason why
selecting medoids is the most reasonable way of exploring the diversity of mod-
els.

Qualitatively, the same set of parameter settings can generate multiple dif-
ferent solutions, depending on the distributional properties of the lemma being
modelled. We already saw this in the comparison between Figures 7.1 and
7.2: what works best for one lemma will not necessary give a decent result
in another. In this section, we briefly look at the models previously plotted
in Figures 5.1 and 5.2. In all cases, the parameter settings are the same of
the best model of stof : bound5lex-ppmiselection-focall. The colour-coding
matches the hdbscan clusters, and the shapes, the annotated senses.

In Figure 7.3, we see the same model for heet ‘hot’ and stof ‘substance,
dust…’. The model of heet ‘hot’ has 12 clusters, with roughly equal proportion
of Cumulus, Stratocumulus and Cirrus clouds. Most of them are collocation
clusters representing typical patterns within a sense, but we also find cases of
semantic preference and a few heterogeneous near-open choice clusters. The
stof ‘substance, dust…’ model looks roughly similar, with 7 relatively homoge-
neous clusters: the three Stratocumulus on the upper left are the collocation
clusters discussed in Section 6.2.4 and, next to the red Cirrus defined by se-
mantic preference, they represent typical uses of the ‘substance’ sense. The
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rest of the clusters, as discussed above, are more heterogeneous. A further
difference between the two lemmas is that, while the homogeneous clouds of
stof ‘substance’ represent typical uses that profile different dimensions of the
sense, the typical patterns within heet ‘hot’ constitute idiomatic expressions.

heet stof

Figure 7.3: Models of heet and stof with bound5lex-ppmiselection-focall.

The lemmas shown in Figure 7.4, dof ‘dull’ and huldigen ‘to believe/to hon-
our’, look rather similar to each other but very different from the ones in Figure
7.3. Even though dof ‘dull’, not unlike heet, tends to have multiple clusters
characterized by collocations with different types of sounds, it takes a different
shape in this model. The metaphorical sense represented by the collocation
with ellende ‘misery’ forms a neat orange Cumulus on one side; the semantic
preference for sounds gives rise to the homogeneous light blue Stratocumulus
below, and the rest of the tokens, both those related to the visual sense and
the rest of the metaphorical ones, gather in the heterogeneous green Stratocu-
mulus. As we have seen before, huldigen also has some strong collocates, but
in this model, the tokens of ‘to believe’, led by principe ‘principle’, opvatting
‘opinion’ and standpunt ‘point of view’, take part of an extremely homogeneous
orange Stratocumulus, while most of the ‘to pay homage’ sense covers the light
blue Cumulonimbus, like in the case described in Section 6.5.2.

The lemmas in Figure 7.5, haten ‘to hate’ and hoop ‘hope/heap’, show yet
another configuration generated by the same parameter settings. Except for
the green Stratocumulus in haten, roughly dominated by mens ‘human, people’,
the rest of the clouds are Cirrus clouds: small, heterogeneous, characterized by
many different words.
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dof huldigen

Figure 7.4: Models of dof and huldigen with bound5lex-ppmiselection-focall.

haten hoop

Figure 7.5: Models of haten and hoop with bound5lex-ppmiselection-focall.
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7.3 Summary
The output of a model is not directly predictable from its parameter settings.
Clouds can take many shapes, lemmas exhibit different distributional patterns,
and these patterns can have different semantic interpretations. The parameter
settings that model one phenomenon best, in a certain model, will not nec-
essarily model the same phenomenon in another lemma, or anything else of
interest for that matter. The same parameter settings can result in drastically
different shapes across lemmas, or even if the shapes are similar and they are
the result of comparable distributional behaviours, they might have different
semantic interpretations.

With these cheerful thoughts, the analytical part of this dissertation comes
to an end. In the next chapter I will conclude with a brief summary of the find-
ings in the form of guidelines — tips and tricks for the interested cloudspotter
— thoughts for further research.
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Chapter 8

Conclusions and guidelines

The focus of this dissertation is methodological: rather than describing a spe-
cific phenomenon in language, e.g. metaphorical extensions of temperature
terms in Italian, it develops and tests a workflow that could be used in concrete
case studies. It combines computational techniques with a Cognitive Semantics
framework with the aim of implementing nlp tools to lexicological and lexi-
cographical research. From this position, the main research questions revolve
around the possible mappings between parameter settings, i.e. sets of deci-
sions that generate different models, and semantic phenomena of lexicographic
interest:

• Which parameter settings model senses the best?
• How can we tailor the parameter settings to capture homonymy,

metaphor, specialization, argument structure…?

In addition, since manually annotated senses are not taken as a unique truth
and, beyond accuracy, we are interested in what makes models (fail to) approx-
imate human-based categories, the study incorporates ad hoc visual analytics
for a fluid, quantitatively-rich qualitative analysis.

After an initial presentation of the foundations of the study in the Intro-
duction, Part I, The Cloudspotter’s toolkit, laid out the methodological back-
ground. Chapter 2 described the computational techniques and the method-
ological choices, Chapter 3 showcased the visualization tools and Chapter 4
introduced the selected lemmas and the annotation procedure.

Part II, The Cloudspotter’s handbook, discussed the results of the analyses.
Even though the answer to the original research questions is negative, it is
indeed possible to learn something from the models, and these three chapters
elaborate on these possibilities. Chapter 5 offered a typology of the nephologi-
cal shapes, for not all the clouds in the sky are white and fluffy. These shapes
result from identifiable properties of the contexts and can be interpreted in
different ways. Chapter 6 followed with a systematization of these possible
interpretations from a linguistic perspective. A net of phenomena is woven
from a combination of paradigmatic relations — from heterogeneous clusters to
clouds that reveal semantic profiling of patterns — and syntagmatic relations
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— from collocations through semantic preference to open-choice tendencies.
They are not the same phenomena we set out to investigate initially; although
we may find metaphor, metonymy, specialization and argument structure, it
greatly depends on each lemma and on how it matches these semasiological
categories to its distributional behaviour. It is not enough for a lemma to have
metaphorical extensions, they also have to correlate with salient contextual
patterns. Nevertheless, we do find linguistic properties — and particularly the
kind of properties that corpus-methods can capture while other empirical ap-
proaches might not. Finally, Chapter 7 illustrated the negative answer to the
main question: there is no set of parameter settings that works best across the
board. Each lemma has a different semasiological structure in terms of distri-
butional behaviour, thus applying the same tool will return different results. If
a parameter configuration is a cookie cutter, the various lemmas are kinds of
mixtures: lemon-flavoured cookie dough, dough with chips, dough flattened by
an embossed rolling pin… or even sourdough or cake batter.

In the remainder of this chapter I will summarize some points that emerge
from the dissertation as a whole. First, Section 8.1 offers a possible explanation
for the discrepancy between the expectations that we may come to distribu-
tional models with and the actual results. However, this shall not stop us:
Section 8.2 lists a few technical guidelines for model building, based on the
set of models explored here, and Section 8.3 is dedicated to general sugges-
tions for further research based on what was not done for this project. Finally,
Section 8.4 summarizes the contributions of this dissertation to distributional
approaches to semantics.

8.1 Types, tokens and clouds
Distributional models rely on the Distributional Hypothesis: words that oc-
cur in similar contexts tend to be semantically similar. That seems to work
for types, and projecting the intuition onto the token-level sounds straightfor-
ward: attestations occurring in similar contexts will be semantically similar,
and those occurring in different contexts will be semantically different. Se-
mantic distinctions between attestations of a word, i.e. their semasiological
variation, are normally grouped as senses. So it stands to reason that we can
use token-level distributional models to find senses (Schütze 1998, Yarowsky
1995). However, this line of reasoning has two issues.

On the one hand, there is the issue of patterns. At the type-level, vector
representations aggregate over all the occurrences, building profiles that take
into account patterns of attraction and avoidance across hundreds, thousands
or even millions of events. Similar words share the same tendencies; different
words prefer different things. The intuition behind distributional models is
often illustrated with examples like the following (Pantel & Lin 2002: 613):

A bottle of tezgüno is on the table.
Everyone likes tezgüno.
Tezgüno makes you drunk.
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We make tezgüno out of corn.

The authors make the point that the words in the context of tezgüno suggest
that it may be a kind of alcoholic beverage, because other alcoholic beverages
tend to occur in similar contexts (Pantel & Lin 2002: 613). And indeed, at
type-level, such patterns are likely to generate a distributional profile for tezgüno
that is similar to that of beer, for example. And even though actual contexts are
rarely as self-explanatory as these examples, type-level distributional models
— to some degree at least — work.

Type-level models will be most similar between words with similar over-
all patterns: tendencies towards or against certain contexts. Each individual
context is not enough. The examples above highlight different properties of
tezgüno, namely that it is a liquid stored in bottles, that people have (positive)
opinions about it, that it is alcoholic and that it is made out of corn. The
range of items that could occur “in the same context” of tezgüno will depend
on which of the contexts we take into account. Take, for example, the following
replacements:

A bottle of water is on the table.
Everyone likes you.
Whiskey makes you drunk.
We make cornflakes out of corn.

Each context is not enough: at most, they set up situations in which some
meaning or meaning dimension fits, while the other dimensions, whatever they
are, are backgrounded and irrelevant. Type-level models work because they
look at all the contexts together. At the same time, we cannot really know
if the tezgüno that makes you drunk and the one made of corn are the same
tezgüno; type-level models build on the assumption that they do, and for that
reason they conflate semasiological structure.

In the same way, token-level models look for patterns, i.e. tendencies to-
wards or against certain contexts or context words, but with a much more
restricted pool of variables. First, the context of a token contains fewer vari-
ables than the aggregated context of a type to draw a pattern from, which
results in more polarization and less nuance. Frequently co-occurring words
will dominate and define what counts as a pattern, while weaker words will
lack the necessary distinctiveness to impose their patterns. And because au-
thentic concordances are not neat, propositional, explanatory descriptions of
the targets, these patterns do not necessarily match senses.

That is, in fact, the second issue. The possibility of determining what counts
as different senses is debatable (Geeraerts 1993, Glynn 2014), so why should we
look for senses in the first place? Indeed, Geeraerts suggests a procedural rather
than reified conception of meaning: “words are searchlights that highlight,
upon each application, a particular subfield of their domain of application”,
and adds that “the distinction between what can and what cannot be lit up at
the same time is not stable” (Geeraerts 2006: 137). In terms of clouds, context
words compete for the opportunity to signal the subfield highlighted by the
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target at the moment. The result is imprecise for several reasons. First, the
context words are represented as type-level vectors that generalize over their
most salient patterns, which are not necessarily the relevant dimension in this
context, as in the case of uitspraak herroepen ‘to recant a statement/to void a
verdict’ discussed in Section 6.4.1. Second, the dimension the context words
highlight are not necessarily the ones we are interested in; there is structure
in models of heilzaam ‘healthy/beneficial’ discussed in Section 6.2.1, but it
does not correspond to the distinction between literally healthy or healing and
metaphorically healthy, i.e. beneficial. Third, and in relation to the issue of
patterns, the context words might be too infrequent and not distinctive enough
for their voice to reach us.

On the bright side, there is so much variation across these patterns that
their shapes alone are already interesting information. All words can be de-
scribed with lists of collocations, but token-level models reveal how strong (or
weak), how distinctive, how widespread the collocations are within the scope of
the target. And beyond the clouds themselves, visualizing the models can let
us see spatial organization that might be missed by clustering solutions, such as
the fact that the occurrences of uitspraak herroepen ‘to recant a statement/to
void a verdict’ come together while staying close to other instances of herroepen
‘to void’ in a juridical context, or the fact that health-specific and general at-
testations of heilzame werking ‘beneficial effect’ occupy opposite poles of the
same cluster. Distributional models might not replicate our intuitions about
the semantic distinctions within a lemma, but will offer us a different, comple-
mentary perspective that only they, by scanning and organizing hundreds of
empirical observations, may capture.

8.2 Practical tips
Even if there is no infallible parameter settings configuration and it is hard to
predict their output, some guidelines are possible. In this section I would like
to offer some suggestions for a future case study that would use distributional
semantics and, of course, the visualization tools presented here, to investigate
the semasiological structure of a given lemma. The initial research questions
would go along the lines of “How strong are the collocational patterns of this
lemma?”, for example. Given the variety of results from the 32 lemmas anal-
ysed for this dissertation, all these guidelines can offer is a starting point to
explore the distributional behaviour of a lemma; further steps to refine the
questions and fine-tune the models would depend on the results from such ini-
tial exploration. In broad terms, the outline of such a case study would be as
follows:

1. Choose your lemma(s)1. In the Nephological Semantics project we look

1They could be separate words, as different case studies, or related words that might
overlap in the application. In that case, it would be possible to combine a semasiological per-
spective, i.e. looking at the distribution of each lemma, with an onomasiological perspective,
i.e. exploring the overlap and differences between the lemmas.
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for ways of scaling up this procedure, but these are suggestions for small-
scale studies, where a detailed examination of the clouds is viable.

2. Set up a range of parameter settings that are not too restrictive:

• keep window sizes above 3;
• forget about sentence boundaries;
• avoid long, unfiltered type-level vectors;
• don’t bother with REL templates;

3. Generate hundreds of models on a manageable sample of tokens based on
those parameters;

4. Explore the plot of models in Level 1 of NephoVis (Section 3.2) to get an
idea of how the parameter settings interact;

5. Compute up to 9 medoids with pam and explore them in Level 2 of
NephoVis;

• I chose 8 because it was the minimum that kept enough variation
across lemmas, but on a lemma-by-lemma basis it could very well
be reduced. More than 9 medoids are difficult to visualize simulta-
neously.

6. Cluster the models with hdbscan and explore them with the ShinyApp,
finding types of clouds, collocational patterns, etc. The classifications in
Chapters 5 and 6 will be useful, for example:

• Cumulus clouds (very tight and salient) tend to be dominated by
strong collocates and represent typical usages of a sense.

• Cumulonimbus clouds (the huge ones) are normally as good as noise
tokens.

• When Cirrus clouds (the small, wispy ones) are the most salient
clusters, they are capturing the little structure there is. The model
is probably characterized by weak collocational patterns.

7. Interpret the clusters.

• What are the models saying? Are there collocates, lexically instan-
tiated colligates, semantic preference, or neither? Are the clusters
heterogeneous or homogeneous? Could they be considered different
senses?

• Which medoids exhibit a more interpretable structure? What pa-
rameters do they represent?2

• How much more data is left to annotate?

8. If necessary, readjust the parameters and/or incorporate manual anno-
tation and start again.

2For example, via a conditional tree with the clustering solution as response and the
parameter settings as predictors.
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Among the interpretative questions, one of the most crucial ones is: “Could
they be considered different senses?”. I already mentioned in the introduction
that the prototypicality of categories leads us to be sceptical about the existence
of discrete senses. Accordingly, the clouds offer an alternative view on the sema-
siological structure of a lemma: a classification that neither matches dictionary
senses nor replaces them, but could inform semantic research nonetheless. In
the rest of this section I will elaborate on some of the recommendations made
above.

First, I would discourage very restrictive models. We might be tempted to
remove as much noise as possible and only leave context words that are very
informative, which sounds reasonable in theory. But even assuming you can
figure out which words are going to be informative — e.g. via annotation of
cues — the result might not be what you expect. Restrictive models tend to
generate clouds with Hail: dense areas with identical tokens, which override
more subtle relationships. The less “relevant” context words might be harmful,
but they might also make no impact whatsoever, or even add information we
did not expect, like the semantic profiling of specific patterns. That said, some
lemmas may require very strict settings because the context words that would
then be captured are already varied enough.

Concretely, window sizes smaller than 5 tend to be too restrictive, while the
window size of 10 is already bordering into too noisy. Within the dependency-
based models, RELgroup1 models are often too restrictive and rarely informa-
tive enough. A wider variety of REL templates is more useful, but in any case,
designing the templates to fit increasingly complex patterns — especially when
chains of verbs come into play — is time consuming and never good enough.
REL models could be discarded altogether, unless the researcher has a good idea
of which templates are useful for the specific lemma under study. For example,
haten ‘to hate’ tends to occur in active constructions without chains of modals
(e.g. ik haat het ‘I hate it’), while herroepen ‘to recant, to void’ often co-occurs
with the passive auxiliary, modals or even both (e.g. het nachtverbod moest
worden herroepen ‘the night ban had to be voided’). As a result, a simple REL
template capturing the direct object of the verb could be enough for haten ‘to
hate’3 but would miss many of the herroepen ‘to recant, to void’ tokens.

In a similar vein, PPMI can be too restrictive for some lemmas and should be
used with care, especially PPMIweight, which might enhance the influence of
already powerful context words and, for example, cause Cumulonimbus clouds.
Since the filtering power of PPMIselection depends on the range of association
strength values between the target and its context words, it is not straightfor-
ward to find a threshold that is just as restrictive as we want it to and not more
for every lemma. Instead, it could be fruitful to test out different thresholds
— and even combine other measures — on a lemma-by-lemma basis.

One parameter setting that should be certainly avoided is 5000all, which
often makes a great impact in the difference between models but never for the

3We might want to do this because in the current models the strongest context word is
ik ‘I’, which does not contribute to the disambiguation. However, a brief test modelling
the direct objects revealed that they were grouped thematically instead of by animacy, and
thus could not model the distinction between ‘to hate’ and ‘to dislike’ either. Maybe other
second-order settings could return a more adequate model.
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better. Either applying a part-of-speech filter or reducing the dimensionality,
e.g. by using the first-order context words as second order dimensions (FOC),
already gives better results. This is most likely due to sparsity and/or low infor-
mativeness of the dimensions selected by 5000all, so applying svd afterwards
might also help.

Finally, ignoring sentence boundaries does not seem to make a difference. In
most cases, Level 1 plots place models that are only different on this parameter
right next to each other; the few times that it makes a difference, two or three
other parameters are already more important.

These tips should help in the selection of parameter settings for future
models, but it is still a good idea to generate multiple models and look at
their medoids. Chapter 7 showed that there is no unique recipe to tailor a
model to disambiguate in a certain way. Models find patterns based on the
distributional behaviour of the lemma — how frequent its context words are,
how similar they are to each other, how often they co-occur, etc. The degree
to which these patterns match senses in general or any sort of semasiological
structure — homonymy relations, metaphor, idioms, argument structure… — is
an empirical question, and that is what this procedure addresses. Fine-tuning
can only be implemented after the first set of medoids have traced an outline
of the lemma’s structure.

What is more, the medoids can also provide an estimation of how much
manual annotation is actually needed. Given a model like heffen ‘to levy/to
lift’ or herinneren ‘to remember/to remind’, the patterns are so clear and
homogeneous that checking the main context words of the different clusters
and a few of their concordance lines is enough; at most, you would need to
examine some noise tokens more closely. At the same time, in a case like
heilzaam ‘healthy/beneficial’ you would immediately see that the collocation-
based clouds are semantically heterogeneous, while a case like haten ‘to hate’
might make you want to rethink your life choices. In any case, you don’t need
to annotate all the tokens at the beginning unless there is an a priori classifica-
tion you are intent in finding. Even then, it’s best to keep it under 6 categories,
or it becomes really hard to distinguish their colour-coding visually.

These suggestions should avoid a lot of trial and error in case-studies along
these lines. Interpreting clouds when we have not seen any before and, espe-
cially, if we expect them all to be clearly-defined islands, is quite challenging
already. Besides, as Geeraerts (2010a: 73) argues, “empirical research involves
an empirical cycle in which several rounds of data gathering, testing of hypothe-
ses, and interpretation of the results follow each other”, and cloudspotting is
no exception.

8.3 To the sky and beyond
The choices described in the Introduction and Chapter 2 implied leaving out
the alternatives, which could very well be explored in future research projects.

At the level of parameter settings, other selections of part-of-speech filters,
for example expanding lex with proper names and prepositions, could offer
a middle point between the two options that were examined, since lex was
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sometimes too restrictive, while all could be too noisy. When it comes to
dependency-based models, the natural extension is to incorporate the depen-
dency path into the feature, e.g. with “is object of to eat” as a feature. This is
technically more challenging and likely to result in sparser vectors, but would
make the connection between the target and the second-order dimensions more
clear. In the current implementation, the relationship between the target token
study1 and its second-order dimension language/n in Table 2.2 is given by the
association strength between said second-order dimension and the first-order
context word lexicography/n: lexicography/n occurs in the immediate context
of study1 and has a ppmi of 4.37 with language/n, so the coordinate of study1
in the language/n dimension is 4.37. If dependency relations are built into the
feature, e.g. “its object is lexicography/n”, the dimensions highlighted by that
feature would be other verbs that take lexicography/n as object.

In relation to this issue, the precise effect of the second-order parameters
has not been thoroughly explored, but techniques should be devised to better
understand the effect of the second-order dimensions. Moreover, instead of
comparing FOC second-order vectors with longer ones based on frequency, they
could be compared with FOC vectors based on different samples: FOC models
transfer the context words that survived the first-order filters as second-order
dimensions, so the same set of parameter-settings on different samples — par-
ticularly on samples of different sizes — may result in different selections of
context words. Additionally, they could be compared to implicit type-level
vectors (Lenci 2018), i.e. where the dimensionality was reduced by svd or non-
negative matrix factorization, or even prediction-based vectors. The original
reason not to implement this was to keep the transparency of the vectors to
a maximum (Heylen et al. 2015), but the transition to second-order vectors
already obscures the meaning of the dimensions to a great extent.

Following this reasoning, the motivation to exclude prediction-based models
disappears. On the one hand, type-level word embeddings could be incorpo-
rated as representations of the first-order context words. On the other, given
the possibilities offered by the family of bert models, bertje (de Vries et al.
2019) could be applied to the tokens themselves. For a proper comparison be-
tween the methods, new models would have to be created with word forms as
units, re-tokenizing the corpus with bertje’s tokenizer. The first goal would
then be to check how well the classifications presented in Chapters 5 and 6
can be mapped to models based on word forms and to what degree they also
apply to bertje models. Nonetheless, concerns about the tokenization should
be addressed: the output might be useful for certain nlp tasks, but if words
cannot be captured because the tokenization breaks them (as is the case of
heilzaam, which is split between heil and ##zaam), the utility of bertje for
lexicographical purposes decreases. A solution might be the implementation of
larger units as targets and features in modelling procedure, such as bigrams.
That in itself is another interesting avenue for further research, since words do
not work in isolation, but technically more challenging.

Not only the model-building process, but also the model-analysis process
could use a deeper exploration. First, the possibility of implementing umap
should be explored. Based on initial comparisons, the clarity of the clusters
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does not seem to be very different from the t-sne output, but the shapes
are different and their relative distances are supposed to be interpretable. In
addition, hdbscan clustering with 𝑚𝑖𝑛𝑃𝑡𝑠 = 8 replicates the visually identified
patterns quite well, but it is not always clear when tokens are excluded as
noise or how distinctive the clusters have to be to split. That said, switching
to umap, other perplexity values for t-sne and/or other 𝑚𝑖𝑛𝑃𝑡𝑠 values for
hdbscan may void the warranty on the classifications and descriptions offered
in this dissertation.

8.4 Summing up
Distributional semantics addresses an issue for descriptive linguists who would
like to use corpus methods for semantic analysis. Such a linguist would be eager
to exploit the increasingly large available corpora but tired of manually anno-
tating hundreds of concordances with sense tags that might not even be that
appropriate4. Distributional models, on the other hand, present themselves as
a scalable, automatic approach that can process large amounts of textual data
and extract patterns with semantic correlates. They constitute an irresistible
asset for empirical approaches aiming to maximize the automation of the most
laborious, quantitative tasks and give the researcher more energy and time for
the creative and hermeneutic aspects of research. This dissertation was written
for such a linguist, and it has good news and bad news.

The bad news is that, although distributional models can indeed reveal
patterns and offer information that we might not obtain by other means, these
are not necessarily the patterns and information we would have expected. The
results from this study suggest that, if we are to use distributional semantics
for descriptive analyses, we should not do so blindly. Unlike what high accu-
racy scores on benchmarks would suggest, there is no parameter setting that
works optimally across the board, because what is relevant in the description
of one lexical item might not be for another. For the same reason, different
configurations of parameter settings will have different effects on each lemma,
highlighting specific aspects that may be more or less interesting from a lin-
guistic perspective. They may be senses, or they may be something else.

The good news is that a user-friendly, comprehensive visualization tool is
available for the exploration of such models. Interfaces like the ones described
here turn the apparent chaos of distributional models into concrete visual rep-
resentations for us to examine and interrogate. Rather than despairing in the
face of multiple diverse models, we can create a composite picture based on
a few representative models: we embrace the complexity and thus achieve a
richer, more nuanced description. These tools offer both a fluid interaction
with the output of the models and a look into their backstage operations.

In sum, this dissertation illustrates why, as descriptive linguists, we
shouldn’t trust distributional models blindly, but also how we can exploit
them nonetheless. On the one hand, it illustrates a workflow for investigating
distributional modelling itself: the same steps followed in this study can be

4Or of finding ways for other people to do so.
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applied to alternative implementations for a better understanding of distribu-
tional approaches. On the other hand, with both warnings and suggestions,
it offers a framework and tools for future studies implementing token-level
distributional models to linguistic research or, as we like to call it, linguistic
cloudspotting.
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